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ABSTRACT IN POLISH 

W celu pełnego poznania złożoności systemów biologicznych jakimi są tkanki 

konieczne jest zastosowanie czułych metod umożliwiających przeprowadzenie analiz z 

rozdzielczością na poziomie pojedynczych komórek. W ramach niniejszej rozprawy 

wykorzystane zostały różnorodne metody z zakresu analizy transkryptomicznej, takie jak: 

sekwencjonowanie RNA z pojedynczych komórek, sekwencjonowanie RNA z homogennej 

puli komórek pierwotnych wyizolowanych za pomocą aktywowanego fluorescencyjnie sortera 

komórek, transkryptomika przestrzenna i mikromacierze genowe. Metody te zostały 

zastosowane do analizy ludzkiego mózgu, zbadania funkcji limfocytów T regulatorowych u 

pacjentów z białaczką szpikową oraz analizy zestawu danych LINCS L1000, będącego 

wielkoskalowym kompendium profili ekspresji genów z różnych ludzkich linii komórkowych 

poddanych działaniu rozmaitych leków. Poprzez wprowadzenie odpowiednich zmian w 

podejściach analitycznych dostępnych obecnie dla wymienionych powyżej metod, podjęte 

zostało dążenie do określenia wewnętrznej heterogenności tkanek, rozszyfrowania zależności 

przestrzennych pomiędzy komórkami, a także identyfikacji procesów molekularnych leżących 

u podstaw różnorodnych zjawisk biologicznych, zarówno w tkankach zdrowych jak i w 

procesie chorobowym. 

Celem niniejszej pracy było: 1) przeprowadzenie oceny przydatności wybranych 

technik laboratoryjnych do identyfikacji różnych typów komórek; 2) wykazanie przydatności 

integracji danych uzyskanych za pomocą różnych metod transkryptomicznych; 3) wykazanie 

przydatności nowych podejść analitycznych do udoskonalenia analiz transkryptomiki 

przestrzennej, poznania mechanizmów chorobowych oraz identyfikacji nowych potencjalnych 

strategii terapeutycznych. 

Wyniki niniejszej pracy przyczyniły się do istotnego postępu na polu badań 

transkryptomicznych i wskazują jak ważną rolę w rozszyfrowaniu złożoności systemów 

biologicznych odgrywa zastosowanie zaawansowanych narzędzi obliczeniowych i metod 

statystycznych. Analiza profili ekspresji genów specyficznych dla różnych typów komórek 

pozwoliła na pełniejsze zrozumienie mechanizmów chorobowych i może przyczynić się do 

rozwoju medycyny precyzyjnej. W przypadku analizy ludzkiego mózgu zastosowanie metody 

CSDI pozwoliło na zidentyfikowanie kompletnych przestrzennych profili transkryptomicznych 

komórek. Analiza RNA w puli wysortowanych komórek T regulatorowych poddanych 

działaniu pęcherzyków zewnątrzkomórkowych wyizolowanych z osocza pacjentów z białaczką 

szpikową umożliwiła identyfikację mechanizmów immunosupresji, które mają krytyczne 
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znaczenie dla wyników leczenia i przeżycia pacjentów i mogą być w przyszłości potencjalnym 

celem nowych terapii. Analiza zestawu danych LINCS L1000 pozwoliła na identyfikację 

nowych potencjalnych peptydów przeciwnowotworowych, których aktywność zostanie 

przetestowana w warunkach laboratoryjnych. 

Słowa kluczowe: bioinformatyka,  metody analizy z rozdzielczością na poziomie komórki, 

transkryptomika przestrzenna, profilowanie pojedynczych komórek/jąder komórkowych, 

mikromacierze genowe, transkryptomika zbiorcza, sortowanie komórek pierwotnych, linie 

komórkowe 
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ABSTRACT IN ENGLISH 

To resolve the complexity of data analysis for biological systems, sensitive methods 

with single cell resolution are required. This research endeavors to advance our understanding 

of transcriptomic profiling methods, encompassing single-cell RNA sequencing, spatial 

transcriptomics, bulk transcriptomics and gene microarray. By improving the current data 

analysis approaches for these transcriptomics methods, we seek to decipher intricate cellular 

heterogeneity, spatial relationships, and the molecular underpinnings of diverse biological 

phenomena.  

Our study seeks to achieve three main objectives: firstly, to assess the utility of diverse 

wet lab techniques in obtaining distinct cell types; secondly, to demonstrate the feasibility of 

integrating and analyzing data from different techniques using transcriptomics methods; and 

finally, to showcase the effectiveness of these approaches in enhancing spatial analysis, 

unraveling disease mechanisms, and identifying potential therapeutic strategies. 

In our study, we utilized scRNA-seq, spatial transcriptomics, primary cell sorting, and 

microarray profiling. We used these methods to investigate human brain tissue, myeloid 

leukemia cells, and a large-scale compendium of functional perturbations in cultured human 

cells, known as LINCS L1000 dataset, respectively. These methods were carefully selected and 

executed to provide comprehensive insights into gene expression profiles across distinct 

biological systems. 

Our findings represent significant advancements in transcriptomic analysis. In our study 

of human brain tissue, the introduction of Consecutive Slices Data Integration (CSDI) rectified 

incomplete spatial transcriptomic profiles, yielding superior spot clustering and label 

transferring. The bulk transcriptomics analysis of primary sorted myeloid leukemia cells 

unveiled the impact of leukemic extracellular vesicles on regulatory T cells, unraveling critical 

immunosuppression mechanisms. Furthermore, our drug repositioning pipeline, applied to 

LINCS L1000 data, unveiled potential drugs to enhance the application of anticancer peptides. 

This research underscores the pivotal role of advanced computational tools and 

statistical methodologies in unraveling the complexity of transcriptomics. By deciphering cell-

type-specific gene expression patterns and their functional implications, we pave the way for a 

deeper understanding of intricate biological systems and diseases. Our work holds promise for 

advancing precision medicine and the development of novel therapeutic strategies. 
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SUMMARY  

Introduction 

General introduction 

Cells are the fundamental units of life, and can be classified based on their structural 

and functional characteristics. In multicellular organisms, cells come together to form tissues. 

The composition of tissues and their functions are regulated by the transcription of different 

genes. Gene transcription is the process by which the genetic information stored in DNA is 

converted into RNA molecules. Thus, understanding the expression patterns of these genes is 

crucial for unraveling the molecular mechanisms underlying normal and pathological states of 

tissues 1. Previous gene profiling techniques, such as bulk transcriptomics, lacked single cell 

resolution. Bulk transcriptomics, which involves sequencing RNA from a population of cells, 

averages the gene expression levels across all cells in a tissue. Although combining bulk 

transcriptomics with methods such as primary cell sorting can enhance the resolution of cell 

gene profiling, using it with a pool of cells obtained from tissue covers the information about 

cellular heterogeneity and diversity. This can be particularly problematic when studying tissues 

with complex cellular compositions, as rare cell-types or subpopulations of cells may be 

overlooked or underrepresented in the data 2. Hence, it is important to pursue new ways to 

decompose tissues to cell-types and further profile their expressions separately. 

There are multiple approaches to distinguish the expression of particular cell-types such 

as working on immortalized cell lines, primary cell sorting, and dissociating the tissue to single 

cells and labeling them with gene barcodes. Immortalized cell lines are established and 

genetically modified or continuously dividing cultured cells that overcome natural cellular 

lifespan, providing an enduring resource for research purposes. Primary cells are cells derived 

directly from living organisms, in contrast to established cell lines that have been cultivated and 

maintained in the laboratory for prolonged periods. Single-cell RNA sequencing (scRNA-seq) 

method captures and sequences the RNA of individual cells, enabling the analysis of gene 

expression at a single-cell level, revolutionizing our understanding of cellular diversity and 

dynamics. These methods will be discussed in more details in the following sections. 

Immortalized cell lines 

An immortalized cell line refers to cells that has acquired the ability to continuously 

replicate and divide beyond the typical limitations of normal cells. Normal cells have a limited 

lifespan due to a process called cellular senescence and apoptosis, which is regulated by 
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mechanisms like telomere shortening and DNA damage responses. Senescence is the process 

by which cells irreversibly stop dividing and enter a state of permanent growth arrest without 

undergoing cell death. Immortalized cell lines have overcome these limitations and can divide 

indefinitely, resembling a more embryonic or stem cell-like state 3.  

There are both normal and cancer-derived immortalized cell lines. Normal cell lines are 

derived from healthy tissues and are often used in research to study basic cellular processes. 

Creating an immortalized cell line from normal tissues involves introducing specific genetic 

alterations that bypass cellular senescence and apoptosis checkpoints. This is often achieved by 

introducing viral genes (such as EBV, SV40 T antigens and HPV-16 E6/7 gene) or human 

telomerase reverse transcriptase (hTert)) and oncogenes (like c-Myc) into the cells 4. Another 

method is employing a lentiviral vector library encoding several of aforementioned genes 

(Figure 1A). These genes have the capacity to either inhibit the function of tumor suppressor 

genes or activate oncogenes, thus stimulating cell division and extending the cell's lifespan. 

Furthermore, primary cells may undergo mutations during the process of division and 

multiplication. Their spontaneous mutations that occur over multiple cell culture passages can 

ultimately result in cellular immortalization. This phenomenon of cell immortalization resulting 

from spontaneous mutations is commonly referred to as "spontaneous immortalization" 4-5 

(Figure 1B). But this method is inefficient in making normal immortalized cell lines as these 

cells will transform into the tumor cells in most cases. There is a basic difference between tumor 

cells and normal immortalized cells. Tumor cells have many classical characteristics such as 

losing contact inhibition, low adhesive ability, and apoptosis inhibition, while immortalized 

normal cells remain their normal genotype and phenotype 4. 

 Cancer-derived immortalized cell lines are derived from cancerous tissues and maintain 

the characteristics of the original tumor, making them valuable tools for cancer research and 

drug testing. These cells already possess alterations that have allowed them to bypass 

apoptosis/senescence and divide in an uncontrolled manner. Researchers can culture and 

propagate these cells under controlled conditions to establish immortalized cell lines that 

represent the characteristics of the original cancer 6. 
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Figure 1. Cell immortalization; A) introducing genes, which can activate an oncogene or suppress 

the activity of tumor suppressor gene and promote cell division; B) by spontaneous mutation in the 

process of dividing and multiplying (adopted from creative bioarray; https://www.creative-

bioarray.com/). 

Working on cell lines provides a cost-effective approach, offering the advantage of 

studying cells in a controlled environment. However, cell lines may not fully represent the 

biology of the original tissue, and they may be subject to genetic drift or other changes over 

time7. Accumulation of genetic changes may cause genetic and phenotypic heterogeneity in 

different cells of the same cell line as every cell division can introduce a number of different 

mutations. It can eventually lead to differences in characteristics such as growth rate, response 

to stimuli and gene expression profiles. In addition, certain immortalized cell lines may have 

specific requirements for culture conditions, such as specific media formulations, growth 

factors, or supplements. Some cell lines may exhibit a slow growth rate, be more sensitive to 

changes in culture conditions, or require specialized techniques for successful propagation8.  

Cancer cell lines serve as invaluable tools with diverse applications in drug discovery. 

These cell lines, which are derived from various cancer types, provide researchers with a 

simplified yet representative model of the complex cellular and molecular characteristics of 

cancers. Their ability to be cultured and manipulated in the laboratory setting allows for 

efficient screening of compounds, assessment of drug efficacy, and investigation into the 

underlying mechanisms of cancer development and progression 9. Drug repositioning, also 

https://www.creative-bioarray.com/)
https://www.creative-bioarray.com/)
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known as drug repurposing, constitutes a strategic approach to drug discovery wherein existing 

drugs that were originally developed for one medical condition are identified and repurposed 

for the treatment of another condition. This approach capitalizes on the known pharmacological 

profiles of these drugs, potentially accelerating the drug development process and minimizing 

risks associated with safety and efficacy. Drug repositioning is particularly relevant to cancer 

research due to the intricate nature of cancer biology and the urgent need for effective therapies. 

By using cancer cell lines, researchers can screen a variety of existing drugs against these cell 

lines to identify compounds with unexpected anti-cancer properties 9.  

In the context of drug repositioning, one effective method to assess the impact of drugs 

on cell lines involves the sequencing of treated and untreated cell lines to investigate their 

response. Among the cost-efficient techniques available, microarray stands out as a reasonable 

option. Microarrays are versatile tools that have revolutionized various fields of molecular 

biology and genomics, enabling high-throughput analysis of a multitude of biological 

molecules. Within the realm of microarray technology, there are several distinct types including 

Chromatin immunoprecipitation microarrays (ChIP-chip) 10, Genomic DNA Microarrays 11, 

gene Expression Microarrays 12 and protein Microarrays 13 highlighting their unique 

applications and functionalities. 

Chromatin Immunoprecipitation Microarrays (ChIP -chip) 10 merge chromatin 

immunoprecipitation (ChIP) with microarray technology to map protein-DNA interactions 

across the genome. By selectively isolating DNA fragments associated with specific proteins 

and analyzing them on a microarray chip, researchers gain insights into gene regulation and 

epigenetic modifications. Genomic DNA Microarrays 11 are designed to detect genetic 

variations within an organism's DNA, including copy number variations (CNVs) and single 

nucleotide polymorphisms (SNPs). They are invaluable for genotyping studies, helping 

researchers explore genetic distinctions among individuals, populations, or species, and 

unraveling the genetic underpinnings of various biological phenomena. Gene Expression 

Microarrays 12 enable the simultaneous measurement of thousands of genes within a biological 

sample, shedding light on gene activity under specific conditions. They are instrumental in 

transcriptomics research, facilitating the comprehension of mRNA expression patterns in 

response to environmental cues, treatments, or developmental stages. Their applications span 

diverse domains, including identifying disease biomarkers, probing gene regulation networks, 

and characterizing intervention or environmental impacts. Protein Microarrays 13 provide a 

platform for the systematic examination of protein interactions, binding partners, and 
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expression levels. They enable the profiling of specific proteins or antibodies in biological 

samples, aiding in the elucidation of protein-protein interactions, antigen-antibody 

relationships, and protein expression patterns. These microarrays find applications in 

proteomics research, biomarker discovery, and drug development, offering insights into the 

complexities of protein biology. These diverse microarray methods are invaluable in advancing 

our understanding of biological processes and are indispensable tools for researchers across 

various scientific disciplines.  

Gene expression microarray is ideal for investigating the effect of drugs in the context 

of drug repositioning. The analysis begins with the extraction of RNA from both treated and 

untreated cell lines. This RNA is then converted into labeled complementary DNA (cDNA) 

using reverse transcription. The cDNA is then applied to the microarray chip, where it 

hybridizes with the immobilized probes. After washing to remove any non-specific binding, the 

chip is scanned to quantify the intensity of fluorescent signals, revealing the level of gene 

expression (Figure 2). The obtained data is then subjected to rigorous bioinformatics analysis 

to identify differentially expressed genes, which may indicate the impact of the drugs on the 

cellular pathways. This approach allows researchers to profile how specific drugs influence the 

cellular response at the molecular level 14. 

 

Figure 2. A general scheme of the methodology of gene expression microarray method in the 

concept of drug repositioning. RNA is extracted from treated and untreated cell lines and converted 

into fluorescent labeled cDNA. The cDNA is applied to a microarray chip, where it hybridizes with 
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immobilized probes. The chip is scanned to quantify fluorescent signals, revealing differences in gene 

expression levels between treated and untreated cells in downstream bioinformatics analysis. 

Primary cell sorting 

Primary cell sorting involves physically separating cells based on specific 

characteristics, such as size, shape, surface markers (usually surface proteins), combined with 

fluorescent labeling. This method is highly accurate and can isolate cells with high purity 15. 

However, primary cell sorting is also labor-intensive and can be relatively expensive, especially 

if specialized equipment is required 16. Some protein markers lack specificity, and employing 

them for cell sorting leads to contamination by inclusion of undesired cell types. In addition, 

some cells do not have unique surface protein markers 17. Besides, factors like cell stress, 

physical manipulation, or exposure to certain reagents during the sorting process can induce 

alterations in gene expression levels 18.  

There are many methods of cell sorting, each with its own principles and applications. 

One of the most popular is Fluorescence-Activated Cell Sorting (FACS) employs fluorescent 

labels to bind to cell surface markers, enabling sorting based on distinct fluorescence patterns 

(Figure 3). FACS is a pivotal technique in modern cell biology and immunology that enables 

the isolation and purification of specific cell populations based on their distinct fluorescent 

properties. FACS combines flow cytometry and cell sorting technologies to analyze and sort 

individual cells from heterogeneous populations with remarkable precision. The process 

involves labeling target cells with fluorescent markers that bind to specific molecules, such as 

antibodies binding to cell surface proteins or dyes targeting intracellular components. As cells 

flow through a narrow stream in a flow cytometer, they pass through a laser beam that excites 

the fluorescent molecules, causing them to emit light at characteristic wavelengths. The emitted 

light is then detected and measured, providing information about the cells' fluorescence 

intensity and distribution. FACS takes this a step further by allowing the real-time sorting of 

cells based on their fluorescence properties. Electrically charged plates situated near the stream 

of cells generate an electric field that can deflect individual cells into separate collection tubes, 

effectively isolating the desired subpopulations for further analysis or experimentation. This 

technique has numerous applications in immunology, cancer research, stem cell studies, and 

various other fields, where the isolation of specific cell types is critical for advancing our 

understanding of cellular processes and disease mechanisms. 
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Figure 3. The principle of Fluorescence-Activated Cell Sorting. Each cell is channeled into a 

distinct droplet upon exiting the nozzle, and this droplet is electrically charged according to the cell's 

fluorescence. Employing deflection plates, the machine guides cells towards designated collection 

tubes. For instance, cells stained with Fluorescein isothiocyanate (FITC) and held within droplets 

receive a positive charge, prompting their attraction to the left and collection in corresponding tubes. 

Conversely, cells stained with PE and enclosed in droplets acquire a negative charge, propelling them 

towards the right for collection. Following sorting, the isolated cell populations are subjected to further 

analysis for verification, after which the sorted cells can be cultivated for subsequent experiments. 

Figure adopted from https://www.abcam.com 

Some other examples of primary cell sorting are: Magnetic-Activated Cell Sorting 

(MACS) uses magnetic beads coated with antibodies to separate cells with specific markers. 

Microfluidic Cell Sorting uses intricate channel networks to manipulate cells by physical 

properties like size. Dielectrophoresis (DEP) Sorting uses electric fields to sort cells based on 

their electrical characteristics. Pneumatic Cell Sorting relies on pressure differentials in 

microfluidic channels to sort cells gently. Finally, Density Gradient Centrifugation separates 

cells by their buoyant densities using centrifugal forces. These methods enable precise isolation 

of specific cell types, or sub-cellular structures for diverse applications19. 

https://www.abcam.com/
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Single cell RNA sequencing 

Single-cell RNA sequencing (scRNA-seq) is a cutting-edge molecular biology 

technique that enables the comprehensive analysis of gene expression profiles at the individual 

cell level within complex biological systems. Unlike traditional bulk RNA sequencing that 

averages gene expression across populations of cells, scRNA-seq dissects heterogeneity by 

isolating and sequencing the RNA content of individual cells. One of the widely used scRNA-

seq platforms is 10xGenomics Chromium. This technology involves the isolation of single 

cells, the conversion of their RNA into complementary DNA (cDNA), and subsequent 

amplification and sequencing of this cDNA. By identifying the unique gene expression patterns 

of thousands of individual cells, scRNA-seq provides insights into cellular diversity, cell states, 

developmental trajectories, and disease mechanisms. The resulting data generates high-

dimensional datasets that demand sophisticated computational analyses to uncover meaningful 

biological information, advancing our understanding of cellular biology with unprecedented 

granularity20. 

 

 

Figure 4. Schematic view of 10xGenomics single cell RNA sequencing Chromium 

workflow. Individual cells (or nuclei) are combined with reagents and a solitary Gel Bead that 

contains uniquely barcoded oligonucleotides. These components are confined within nanoliter-sized 

Gel Bead in Emulsion (GEM) droplets using the GemCode™ Technology. Within each GEM, cellular 

lysis occurs, and barcoded reverse transcription is conducted on polyadenylated mRNA from each 

individual cell. This process takes place simultaneously within multiple GEMs. Following these steps, 

high-quality next-generation sequencing libraries are generated collectively in a single reaction and are 

compatible with Illumina sequencers. Image provided by 10x Genomics. 

Based on the length and location of the start site of gene capturing in sequencing of 

cDNA, scRNA-seq can be distinguished to full-length, 3' End and 5' End. Full-Length scRNA-
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seq captures entire RNA molecules. This method's ability to sequence full transcripts enables 

the identification of various gene isoforms, alternative splicing and intricate expression 

regulation. These advantages make this approach valuable for studying cellular heterogeneity 

and gene regulation complexity. However, it is technically demanding and resource-intensive 

due to the requirement for full-length cDNA synthesis and specialized sequencing equipment. 

On the other hand, 3' End scRNA-seq focuses on the 3' end of transcripts, allowing higher 

throughput and reduced complexity. While it provides less information about isoforms and 

splicing, it is cost-effective for profiling gene expression across many cells. Similarly, 5' End 

scRNA-seq targets the 5' end to uncover transcription start sites, promoter usage, and regulatory 

events. This method is valuable for understanding transcriptional initiation and regulatory 

elements while remaining cost-effective and suitable for large-scale studies21. 

Different methods for single cell RNA profiling are available. Smart-seq methods, 

exemplified by Smart-seq2, involve full-length sequencing of individual cells, providing 

comprehensive insights into gene expression, including isoforms. This approach is ideal for 

full-length gene capturing. Drop-seq, on the other hand, employs microdroplets to encapsulate 

single cells with barcoded primers, capturing the 3' end of transcripts and enabling high-

throughput gene expression profiling. Similarly, the 10x Genomics Chromium System utilizes 

gel bead-based partitioning within droplets to encapsulate cells and barcoded beads, 

predominantly capturing the 3' end of transcripts and facilitating high-throughput sequencing 

for gene expression analysis20. Single cell profiling is also available through single-nuclei RNA 

sequencing (snRNA-seq) which use only nuclei instead of whole cells. Using snRNA-seq has 

advantages over scRNA-seq. This is because the process of tissue cryopreservation ruptures the 

cell membranes; however, nuclear membranes remain intact during the freeze–thaw cycle. 

Furthermore, it has been shown that the RNA-seq of single nuclei is highly representative of 

transcriptional profiles from the entire cells. However, since it focuses on nuclei, information 

about cytoplasmic RNA and cell morphology is lost 22. 

scRNA-seq/snRNA-seq is relatively expensive, and data analysis is complex and time-

consuming 23. For instance, preprocessing the data involves quality control, filtering, and 

normalization. To handle the high-dimensional nature of the datasets, dimensionality reduction 

techniques become essential. Identifying cell-types within the data can be intricate due to rare 

cell-types and subtle differences Finally, interpretation of the results necessitates expert 

knowledge to relate gene expression patterns to known functions or biological processes. 

Addressing these challenges involves employing advanced computational tools, statistical 
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methods, and domain expertise to gain deeper insights into cellular heterogeneity and spatial 

organization 24.  

Spatial transcriptomics 

Spatial transcriptomics (ST) is an advanced molecular technique that provides a 

spatially contextualized understanding of gene expression within complex tissues, facilitating 

the mapping of molecular activity in its native spatial arrangement. While scRNA-seq focuses 

on analyzing gene expression profiles at the single-cell level, irrespective of spatial location, 

ST preserves the spatial context by capturing RNA molecules directly from tissue sections, 

utilizing spatially barcoded arrays. This enables the identification of gene expression profiles 

within a small number of cells while retaining their positional information. Using the 

advantages of scRNA-seq (higher resolution in distinguishing cells) and ST (preserving spatial 

information) one can combine these two methods to track the spatial location of single cells 

more accurately. 

The 10x Genomics Visium is one of the widely used methods for ST begins with 

receiving the tissue, which can be either fresh frozen or embedded in optimal cutting 

temperature (OCT) blocks. Tissue sections are then cut and mounted onto specially designed 

Visium arrays. Reverse transcription reagents are added to the tissue sections, capturing 

polyadenylated mRNA. During this step, spatial barcodes are incorporated into the cDNA, 

preserving the spatial information of each transcript. The tissue sections are then dissociated 

from the arrays, and the cDNA is pooled and amplified. The resulting cDNA libraries are 

sequenced using next-generation sequencing technology. The sequencing data is processed 

using computational tools provided by 10x Genomics, aligning the reads to a reference genome 

while retaining the spatial information from the barcodes (Figure 5). This yields a spatially 

resolved gene expression profile, allowing researchers to map gene expression patterns within 

the tissue and gain insights into its molecular and cellular composition. 
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Figure 5. A schematic view of the 10x Genomics Visium ST protocol. It requires either 

fresh frozen tissue or OCT embedded tissue with intact morphology and high RNA quality, with a 

maximum tissue block size of 6.5x6.5 mm (the fresh frozen protocol is illustrated here). Each block 

contains around 5000 barcoded spots with 55µm diameter and 100µm distance from center to center 

between neighboring spots. 

In 10x Genomics Visium Spatial Transcriptomics, each probe of barcoded spots (Figure 

5) serves a specific purpose. Partial read 1 captures a portion of the gene or transcript sequence 

within the spot, revealing the genes present. The spatial barcode uniquely identifies the spot's 

location, allowing for spatial mapping of gene expression. Unique molecular identifiers (UMIs) 

distinguish between multiple copies of the same mRNA molecule, ensuring accurate 

quantification. Finally, the Poly(dT) sequence captures the polyadenylated tails of mRNA 

molecules, facilitating the isolation and sequencing of mRNA, all of which collectively enable 

the acquisition of spatially resolved gene expression data within a tissue or sample 25. 

ST encounters significant challenges including the difficulty of accurately detecting 

low-expression transcripts due to limited sensitivity, as well as the complex task of precisely 

identifying distinct cell types within tissues, especially closely related subtypes because of low 

spatial resolution. The intricate nature of ST datasets, characterized by high-dimensional 

information, demands advanced computational expertise for meaningful analysis and 

interpretation. Biases arising from sample preparation procedures, such as tissue handling and 

staining variability, can impact the quality and reproducibility of results. Moreover, ST 

experiments can be resource-intensive, involving substantial costs and longer timeframes, while 

offering lower throughput than traditional bulk RNA sequencing. The inherent heterogeneity 

of tissues poses a challenge in capturing the full cellular diversity comprehensively. Validating 

ST findings and ensuring reproducibility can be hindered by the absence of well-established 
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reference datasets for spatial transcriptomics, making it essential to work towards refining the 

technique to overcome these challenges and unlock its full potential. The challenges and 

solutions for different ST platforms will be discussed in more details in the following sections. 

Challenges and solutions 

PAPER I 

Despite the insights provided by scRNA-seq and ST methods into cell-type 

heterogeneity, spatial distribution of cells and their gene expression, there are several challenges 

associated with data generation and analysis. Although ST is a powerful new technique for 

capturing patterns of spatial distribution of gene expression, it also has a drawback of its design. 

A 10x Genomics Visium Gene Expression slide used for ST experiments consists of two or 

four tissue-capture areas (6.5 mm x 6.5 mm), divided into 4992 spots, each 55 μm in diameter. 

Every spot contains oligonucleotide probes with unique sequence barcodes that encode spatial 

information of gene expression data. Due to their size, spots may encompass the expression 

profiles of several cells. Consequently, this diminishes the accuracy of distinguishing 

neighboring cell-types. While the Visium platform is one of the widely used approaches in 

spatial transcriptomics, there are other techniques and platforms available, such as Slide-seq 26, 

MERFISH 27, STARmap 28 and Xenium 29. Slide-seq also face similar limitations as Visium in 

capturing single-cell data. For both Visium and Slide-seq, this can be addressed by several 

methods including integration with other scRNA-seq datasets 22, 30. MERFISH, STARmap and 

Xenium provide higher spatial resolution than Visium and Slide-seq. However, these three 

methods require the design and synthesis of specific oligonucleotide probes for targeted RNA 

detection, which can be challenging. Despite the complexity, MERFISH, STARmap and 

Xenium enable the identification and localization of individual cells and their gene expression 

profiles at subcellular levels. On the other hand, Visium and Slide-seq generally offer higher 

throughput compared to the MERFISH, STARmap and Xenium. 

For different tissue types, 10x Genomics recommend specific tissue thicknesses to be 

studied using Visium platform. Choosing the thickness beyond this recommendation for 

different purposes such as easier sectioning, may have drawbacks. For instance, using 

hematoxylin and eosin (H&E) staining for tissue sections out of the recommended thickness 

range may lead to reduced quality and accuracy of the staining. This is particularly evident 

when dealing with thicker tissues, as the H&E stain struggles to evenly penetrate and distribute 

throughout the tissue. Consequently, uneven staining and poor visualization of cellular 

structures can occur, adversely affecting the accuracy and reliability of downstream analyses31. 
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Besides, thicker tissues are more challenging to permeabilize uniformly. This difficulty arises 

because mRNA extraction requires the use of chemicals to break down cell membranes and 

release the mRNA molecules, which can be less effective in penetrating thicker tissues. As a 

result, mRNA extraction efficiency may decrease with increasing tissue thickness, leading to 

lower quality data and reduced sensitivity in downstream analyses 32. 

While selecting the recommended tissue section by 10x Genomics for certain tissue types has 

its benefits, there are also potential drawbacks. In addition to the previously recognized two-

dimensional challenges associated with the larger size of spots compared to cells in ST, we 

have identified three-dimensional issues related to the volume of specific cell-types. For 

instance, when working on the tissue obtained from human brain, the recommended tissue 

thickness by 10xVisium is 10 µm while the size of neuronal nuclei in the human brain is around 

20 µm. Consequently, the obtained ST data lack the full profile of neurons due to the incomplete 

incision of neuronal cells during the cryosectioning process of 10xVisium protocol. Increasing 

the tissue thickness to capture the full profile of neurons presents challenges related to staining 

and permeabilization. Therefore, it is essential to explore alternative approaches to address this 

issue effectively. 

In spatial transcriptomics, consecutive tissue sections refer to the sequential slicing of a 

tissue sample into thin sections to study the spatial distribution of gene expression patterns. By 

examining gene expression profiles across multiple sections, researchers can gain insights into 

the distribution and arrangement of different cell-types within the tissue. The goal is to identify 

and characterize similar patterns of cell-types across the sections, which provides information 

about tissue architecture, cell-cell interactions, and the spatial context of gene expression 

patterns. Furthermore, there is another crucial shared characteristic among consecutive tissue 

sections that can help address the challenge of incomplete profiling of neurons in the human 

brain. Consecutive slices have complementary transcriptomics information that can be used to 

rectify neuronal profiles. To do so, the current analytical pipelines for ST data analysis needs 

to be improved to correct incomplete gene expression of cells before downstream analysis. 

PAPER II 

Chronic and acute myeloid leukemia (CML/AML) evade immune responses and induce 

immunosuppression. Patients with CML and AML exhibit dysfunctional immune cells (CD8+ 

T cells, NK cells) alongside suppressive myeloid cells and immunosuppressive regulatory T 

cells (Tregs). High Treg levels predict poorer treatment outcomes and shorter survival. While 

targeting Tregs directly for elimination seems beneficial, it's challenging and may cause 
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autoimmune adverse events. Identifying factors that drive Treg expansion in leukemias offers 

a potential alternative target. Extracellular vesicles (EVs), essential for intercellular 

communication, play a crucial role in immune modulation. In solid tumors, EVs inhibit T cell 

activity and promote Treg expansion. In myeloid neoplasms, including leukemias, EVs from 

leukemic cells enhance leukemic growth, drug resistance, and modify the bone marrow niche. 

AML-derived EVs have shown to inhibit CD8+ T cell function, yet the role of EVs in promoting 

Treg expansion has been less explored15. 

To study the effect of EVs on Tregs, selecting the best approach is crucial. scRNA-seq 

is a powerful technique and provides high-resolution insights into cellular heterogeneity and 

can reveal previously unseen subpopulations within a cell type. However, one of the limitations 

of scRNA-seq is the relatively lower number of genes that can be captured per cell compared 

to total captured genes in bulk transcriptomics. This limitation arises from the technical 

challenges of amplifying and sequencing RNA from single cells, which can lead to incomplete 

coverage of the transcriptome33. On the other hand, bulk transcriptomics has a high coverage 

for capturing gene profiles from the tissue but lacks the single cell resolution. To address this 

challenge, primary cell sorting can be combined with bulk transcriptomics to offer a 

comprehensive overview of gene expression in a specific cell type. This approach is valuable 

when investigating the global changes in gene expression within a cell population under a 

specific condition. Hence, the combination of primary cell sorting and bulk transcriptomics 

offers a more comprehensive view of the effect of EVs on Tregs compared to scRNA-seq.  

PAPER III 

The sequencing of the human genome has revolutionized our understanding of genetics 

and disease, allowing us to identify genetic risk factors for various conditions. However, having 

a list of genes associated with diseases is not enough to fully comprehend their roles and 

mechanisms. To gain deeper insights, researchers need to understand how genes function within 

cells. This requires perturbing genes and observing the resulting effects.  

Connectivity Map (CMap) is a resource of the profiles of 3 cancer cell lines treated with 

164 drugs using Affymetrix microarray. Before CMap, comprehensive resources for studying 

the effects of genetic and chemical perturbations on cells have been lacking. CMap improved 

our insights of how genes and chemicals influence cellular functions. It leverages a 

compendium of gene expression profiles, which are like snapshots of the activity levels of genes 

in different conditions. By comparing these profiles, researchers can uncover connections 

between genetic and chemical perturbations that might otherwise go unnoticed. Examples of 
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CMap use include the anthelmintic drug parbendazole as an inducer of osteoclast 

differentiation34, celastrol as a leptin sensitizer35, compounds targeting COX2 and ADRA2A as 

potential diabetes treatments36, small molecules that mitigate skeletal muscular atrophy37 and 

spinal muscular atrophy38, and new therapeutic hypotheses for the treatment of inflammatory 

bowel disease39 and cancer40. However, the challenge lay in generating a comprehensive dataset 

due to the high cost of traditional gene expression techniques. To address this, LINCS L1000 

was introduce, a high-throughput and cost-effective approach to gene expression profiling. 

Library of integrated network-based cellular signatures (LINCS) currently comprises of 

over two million gene expression profiles of chemically perturbed human cell lines at a variety 

of time points and doses 41. These data were produced using the LINCS L1000 method, which 

is an array-based transcriptomic profiling and measures a reduced representation of the 

transcriptome (~1000 genes called landmarks) and the rest of the transcriptome will be imputed. 

It has been shown that L1000 is highly reproducible, comparable to RNA sequencing, and 

suitable for computational inference of the expression levels of 81% of non-measured 

transcripts42. An instance of possible challenges for using the LINCS L1000 profiles is that 

providing such a huge amount of data requires computationally intensive approaches for data 

mining. Therefore, developing a systematic method to accurately and efficiently extract the 

relevant information of effect of drug treatments is crucial 9.  
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Aims 

The purpose of the presented study was: 

⮚ To assess the usefulness and benefits of different wet lab techniques in obtaining 

distinct cell types. This exploration encompassed the examination of various 

methods, such as vectorizing tissue sections and dissociating tissues as two 

separate methods (PAPER I), performing primary cell sorting (PAPER II), and 

using immortalized cells (PAPER III).  

⮚ To demonstrate the feasibility of utilizing transcriptomics methods to integrate 

and analyze data obtained from different wet lab techniques. For instance, 

aligning the information for each cell-type to the associated coordinates in 

vectorized tissue sections (ST), employing gene barcode labeling for cell 

profiling and categorization (scRNA-seq) (PAPER I), gene profiling in bulk 

derived from separated cell-types using primary cell sorting (PAPER II) and 

finally, using probe hybridization to capture a subset of genes in immortalized 

cell lines (PAPER III).  

⮚ To showcase the effectiveness of these transcriptomic approaches in enhancing 

spatial analysis (PAPER I), unraveling disease mechanisms (PAPER II), and 

identifying potential therapeutic strategies (PAPER III). 

  



26 
 

Material and Methods 

In our three studies 9, 15, 22, we addressed three different approaches to obtain cell-type 

resolution of transcriptomics profiles. These methods include scRNA-seq combined with ST to 

study human brain (PAPER I) 22, primary cell sorting and bulk transcriptomics downstream 

analysis on CML Tregs (PAPER II) 15, and array-based transcriptomics profiles generated by 

LINCS L1000 method (PAPER III) 41 from various immortalized cancer cell lines 9. 

PAPER I: scRNA-seq and ST of postmortem brain samples 

In terms of the scRNA-seq and ST methods, we utilized the modified 10x Genomics 

Visium Spatial Gene Expression method to analyze the profiles of consecutive sections from 

fresh-frozen brain tissues. Accordingly, we used the orbitofrontal neocortex (ON) and temporal 

neocortex (TN) samples from two subjects. Both subjects were considered healthy controls, as 

the aim was to investigate the reputability of our findings in this research in different subjects. 

Tissue specimens were provided by Harvard University and Massachusetts Alzheimer’s 

Disease Research Center and all experimental procedures were conducted in accordance with 

Independent Bioethics Committee for Scientific Research at Medical University of Gdansk 

(consent No. NKBBN/564-108/2022). The brain-tissue slices were placed onto a Visium Gene 

Expression slide (10x Genomics) and fixed according to the 10x Genomics protocol (doc. 

CG000239 Rev. C). Next, the slides were divided into two via a piece of silicone gasket. 

Subsequently, we stained the tissue by two methods; hematoxylin and eosin, as well as 

combination hematoxylin and Congo red; the latter designed to detect possible amyloid 

deposits. We imaged the slides at 20x magnification using brightfield settings (Olympus 

cellSens Dimension software). Afterwards, the tissue was permeabilized, using conditions 

described in manufacturer protocol. The mRNA was released and bound to spatially barcoded 

capture probes on the slide. Next, cDNA was synthesized from captured mRNA, and 

sequencing libraries were prepared. Samples were loaded and pooled according to the protocol 

(doc. CG000239 Rev C) and sequenced in the standard Illumina pair-end constructs, using 

Illumina’s NextSeq 550 System. Data pre-processing was done using SpaceRanger to first, 

convert (from BCL to fastq format using spaceranger mkfastqc function) and second, align the 

obtained profiles to reference genome (GRCH38) and calculate the number of gene counts 

(spaceranger count function). SpaceRanger is a computational tool designed to preprocess and 

analyze spatial transcriptomics data generated by the 10x Genomics Visium platform (Figure 

5). It performs data organization and quality control to transform complex, raw data into a 

structured format, allowing researchers to examine gene expression patterns across different 
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regions of a biological sample. Essentially, it's a crucial tool for unraveling how genes are active 

in specific locations within tissues or samples. The raw gene counts were processed using 

Seurat (version 4.0.3). Seurat is an R package used in genomics to analyze individual cells. It 

helps researchers understand how genes behave in different cells, identify cell types, and gain 

insights into various biological processes, making it a valuable tool for studying diseases and 

development. The spatial transcriptomics data used in this study are available at the GEO data 

repository under the GSE184510 accession number and are accessible upon request. 

We hypothesized that using single tissue sections of human brain in ST analysis, there 

is a source of batch effect which originates from incomplete neuronal gene profiles. This is 

because of the larger size of neuronal nuclei in comparison with the thickness of tissue slices 

and can be corrected using consecutive slices data integration (CSDI). To test this hypothesis, 

we used Seurat R package to perform dimensionality reduction (RunPCA and RunUMAP Seurat 

functions with default parameters), clustering (FindClusters Seurat function with default 

parameters) and label transferring from snRNA-seq datasets to ST before and after CSDI (to 

see the parameters and utilized functions see 22). Dimensionality reduction in Seurat is a 

computational technique that simplifies intricate single-cell genomics data by compressing it 

into a lower-dimensional format while preserving essential information. It enables researchers 

to create visualizations and plots that reveal hidden patterns, identify distinct cell types, and 

highlight critical genes influencing cellular behaviors. This streamlined representation 

facilitates the understanding of complex biological processes, such as disease mechanisms or 

tissue development, by providing a more interpretable view of gene expression within 

individual cells, ultimately enhancing the insights gained from single-cell genomics datasets. 

For label transferring and deconvolution of ST spots, we used publicly available snRNA-seq 

dataset (deposited in GEO with GSE129308 accession number) as RNA-seq of single nuclei is 

highly representative of transcriptional profiles from the entire cells 43.We introduced CSDI as 

a complementary method for data correction with the potential of removing unknown batch 

effects.  

PAPER II: primary cell sorting of CML Tregs 

Plasma (source of primary EVs) was obtained from whole blood of 10 leukemic (7 CML 

and 3 AML; before starting treatment and at diagnosis) patients. EVs from plasma were first 

isolated by size exclusion chromatography. Then EVs were further isolated using differential 

ultracentrifugation protocol, cell culture conditioned medium was first centrifuged at 160xg (5 

minutes), 320xg (5minutes) and 1300xg (20 minutes), to deplete cells and cellular debris. 
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Further, high-speed ultracentrifugation steps were performed: 10.000xg for 40 minutes to 

deplete medium/large EVs, 100.000xg for 90 minutes to pellet small EVs, after which EVs 

were resuspended in PBS and washed by another ultracentrifugation step, for 90 minutes at 

100.000xg. Ultracentrifugation was performed using 45Ti fixed-angle rotor and Optima XPN-

100 ultracentrifuge (Beckman Coulter). 

Human lymphocytes were obtained from buffy coats of healthy donors (different donor 

each experiment) from the Regional Center for Blood Donation and Blood Care in Warsaw, 

Poland (in accordance with the Declaration of Helsinki and Polish regulations). Peripheral 

blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation 

(Lymphoprep, STEMCELL). T cells, including Tregs, were sorted using BD FACS Aria II. 

Regulatory T cells (Tregs) from ex vivo cultures, treated with CML EVs (from three 

patients) and nontreated (from three patients), were sorted to obtain pure population of viable, 

CD4+CD25hiCD127lo Tregs. Viability of sorted cells was verified at 97%. Sorted cells were 

washed and frozen in TRI Reagent (Sigma-Aldrich). RNA was isolated using Total RNA Mini 

column purification kit (A&A Biotechnology). Sequencing libraries were prepared using NEB 

Next Ultra II Directional RNA library prep kit for Illumina. Samples were sequenced using 

Ilumina NextSeq 500, 75-bp single-end reads (Genomics Core Facility at EMBL, Heidelberg). 

The sequenced reads were aligned to hg38 genome using Hisat2 (version 2.1.0) with default 

settings. The numbers of reads aligned to each gene and the differential expression were 

computed with python HTSeq script (version 0.11.2) and DESeq2 R package (version 1.28.1), 

respectively. Genes that had significant (adj. p-value < 0.05) changes in their expression levels 

(log-fold-change>1) were called differentially expressed. The Gene Ontology analysis was 

performed with Bioconductor package Clusterprofiler (version 3.16.1). Analysis of 

transcription factor binding motifs (TFBM) was performed using PSCAN software, by 

referencing -950 to +50 bp regions of DEGs to JASPAR 2018_NR database. JASPAR is a well-

known open-access database of transcription factor binding profiles. It provides information 

about the DNA binding preferences of transcription factors, which are proteins that regulate 

gene expression. Researchers use JASPAR to study how transcription factors interact with 

specific DNA sequences, which is crucial for understanding gene regulation. The gene 

expression data are available under GEO number GSE180883. 
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PAPER III: developing pipeline for data extraction from LINCS L1000 database 

In the third project, we benefited from the data generated by LINCS L1000 platform. 

Subramanian et al. 2017 41 as part of the NIH LINCS Consortium, developed a new, low-cost, 

high throughput reduced representation expression profiling method that is termed L1000. With 

the LINCS L1000 platform, now more than 2 million profiles from hundreds of cells and 

thousands of drug perturbagens are publicly available 44. In this method, a reduced 

representation of the transcriptome (~1000 genes called landmarks) are measured and the rest 

of the transcriptomics are imputed. Apart from its high reproducibility and comparability to 

RNA sequencing, Subramanian et al. 2017 showed the method’s potential in discovering the 

mechanism of action of small molecules, functionally annotating genetic variants of disease 

genes, and providing valuable insight for clinical trials 41. 

 From the LINCS L1000 database, we aimed to retrieved normalized gene expression 

profiles of landmark genes and imputed transcripts for four different cancer cell lines including 

A549, HEPG2, MCF7, and HT-29, treated with drug in comparison to control (DMSO). To 

achieve this objective, we utilized the Slinky R package (version 1.8.0) to parse normalized 

gene expression profiles of landmark genes and imputed transcripts for a total of 12,328 genes 

and over 900 drugs in each of the four cancer cell lines.45. In our work, we extracted the data 

for both control (treated with DMSO) and experimental conditions (treated with various drugs) 

with the highest standard dose (10 μm) and longest time points (24 h). Log fold changes (LFC) 

were computed through the NumPy library (version 1.19.1) in Python 3.7.6. To avoid undefined 

LFC values due to division by zero or log2 transformation of non-positive numbers, one was 

added to gene expression values for both treatment and control before transformation. As a 

result, we produced LFCs for four different cancer cell lines across about 12,000 genes and 900 

drugs. Using the LFC matrixes as an input, we developed a method to extract the drug 

information which can deregulate particular genes of interest (Figure 1 in PAPER III). To test 

our pipeline, we investigated the drugs that can decrease the level of Heparan Sulfate (HS) and 

Chondroitin Sulfate (CS) at the surface of all four cancer cell lines to improve the performance 

of anticancer peptides.  

To find a reference statistical method to compute gene-gene correlations, three methods 

(Spearman (SP), Pearson (PE), and Kendall tau (KE)) were evaluated using the A549 LFC 

matrix. Top 100 and 500 co-expressed gene pairs were subjected to functional analysis. The 

method which produces the most enriched terms in both Gene Ontology (GO) and KEGG 

pathway analysis was chosen as the reference statistical method. The reference statistical 
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method was applied to all four cancer cell lines. The correlations with experimentally validated 

HSand CS genes were extracted. As the first filtration step, only common co-expressed genes 

with experimentally supported HS and CS genes in all four gene-gene correlation data frames 

(corresponding to four cancer cells) were considered. The expression profiles of these genes 

were extracted from LFC matrixes of all four cancer cell lines. Drugs that resulted in significant 

upregulation or downregulation of the majority of the selected genes were categorized into two 

separate data frames: one for downregulated genes and another for upregulated genes. As the 

second filtration step, drugs that jointly led to up or down-regulation of most selected genes in 

all four cancer cells were extracted. These drugs were proposed for down/upregulation of HS 

and CS for wet-lab validations.  
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Results 

PAPER I 

By employing CSDI (Consecutive Slices Data Integration) in spatial transcriptomics 

(ST) profiles of successive tissue sections in the human brain, the spot clustering and label 

transferring from the single-nucleus RNA sequencing (snRNA-seq) dataset can be 

enhanced. This improvement proposed by us allows more precise and biologically significant 

outcomes.  

Stuart et al. 2019 46 developed the CSDI to correct the transcriptomic profiles of 

consecutive slices using anchors representing spots with similar gene expression profile from 

two consecutive slices. This is used to pair spots from the two slices. At the same time, the 

transcriptomic differences between pairs of spots in anchors are used to correct datasets from 

both consecutive sections. We conducted spatial gene expression analysis in human 

postmortem, fresh frozen tissue sections. Two anatomical regions, the Orbitofrontal Neocortex 

(ON) and the Temporal Neocortex (TN) from two adult male donors were investigated. From 

each region of both subjects, one pair of consecutive slices (eight slices in total) were prepared 

(Figure 1 in PAPER I). We performed our data analysis in two parallel approaches. First, by 

considering each tissue section of consecutive slices as an independent object (Figure 2 in 

PAPER I) and second, by taking into account that consecutive slices may have complementary 

information and needs to be integrated before downstream analysis (Figure 4 in PAPER I). We 

performed the integration using CSDI method. Hence, we could compare the results obtained 

from these two approaches with each other and with histological and morphological 

information of human cerebral cortex as reference. 

We performed spot clustering to classify the spots with similar expression profiles, and 

distinguish distinct cellular layers. In both above-mentioned approaches (first: before and 

second: after CSDI), we could illustrate the grey matter (GM) and white matter (WM) which 

was consistent with histological images, however the pattern of cluster between consecutive 

slices was inconsistent in the first method. Given the expected architectural similarity between 

two successive slices of the cerebral cortex, the question was raised that where the inconsistency 

between the pattern of clusters originates from.  

To compare these two approaches further, and to better understand the identified brain 

layers, we integrated the measured expression profiles of ST from both approaches (before and 

after CSDI) with a previously described snRNA-seq dataset 47 . As single nucleus profiles 
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contain greater number of genes than in our ST profiles, the integration of these two datasets 

(ST and snRNA-seq) allowed us to perform the spot annotation more precisely. Using 

predefined cell-type annotations in snRNA-seq—including oligodendrocytes, astrocytes, and 

neurons—the ST spots were labeled. Before CSDI, we could not confidently annotate neurons 

in GM, which is incompatible with histological image (Figure 2 in PAPER I), while after CSDI, 

neurons were located in the GM in all eight tissue sections (Figure 4 in PAPER I). Besides, 

more neuronal layers in GM could be unveiled using the second approach which is consistent 

with morphology of human cerebral cortex.  

Cell bodies of neurons are mainly found in the GM. However, in the first approach, 

during our label transferring, the spots marked as neurons received weak probability values in 

the GM. Besides, the pattern of spot clusters in this region (GM) were mainly inconsistent 

between consecutive slices. This is an important concern, which led us to hypothesize that using 

information from a single section of tissue may lead to inaccurate interpretation of clusters and 

cell-types. The differences between annotations obtained for the spots before and after CSDI 

can be attributed to the fact that the size of neuronal nuclei is larger than the thicknesses of the 

tissue sections used in the ST protocol. Accordingly, a single slice will capture incomplete 

transcriptomic neuronal context. CSDI provides a robust means of rectification of this 

misinterpretation. Hence, the corrected signals of all types of nuclei can be obtained. 

Consequently, the label transferring from snRNA-seq to ST is made consistent with the 

histological findings only after CSDI. Ultimately, one can study the spatial distribution of 

different cell-types more precisely. 

 

PAPER II 

Using bulk transcriptomics data from primary sorted cells in myeloid leukemia, we 

measured the average gene expression across regulatory T cells (Tregs). We observed that 

leukemic extracellular vesicles (EVs) expand pro-leukemic FOXP3+ Tregs which result in 

evading immune system surveillance, inducing immunosuppression, inferior response to 

chemotherapy, leukemia relapse and shorter survival. 

In tumors, immunosuppressive milieu can induce expression of Treg-specific 

transcription factor Foxp3 in non-regulatory, CD4+CD25- conventional T cells and turn them 

into CD25hi-Foxp3+ induced regulatory T cells 48. Therefore, we studied the impact of leukemic 
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EVs on Foxp3 induction. We performed ex vivo cultures of purified (sorted) human 

CD4+CD25hiCD127lo Tregs together with EVs released by CML-K562 cells (CML EVs).  

Analysis of Tregs by RNA sequencing revealed significant remodeling of the 

transcriptome and elevated expression of 356 genes due to treatment with CML EVs, as well 

as influence on biological processes, such as RNA metabolism. We analyzed genes described 

as characteristic for Tregs in cancer 49-50 and observed a visible trend of upregulated expression 

for CCR4, TFRC, TNFRSF1B (encoding TNFR2), ENTPD1 (CD39), TNFRSF8 (CD30), IL1R1, 

HAVCR2 (TIM-3), and TGFB1 (Figure 4 and supplementary Figure 11 in PAPER II). However, 

in most cases, the difference was not statistically significant, therefore we additionally verified 

these observations on protein level. Analysis of transcription factor–binding motifs (TFBMs) 

of differentially expressed genes identified several transcription factors potentially engaged in 

modulation of Tregs by leukemic EVs, such as EGR1, EGR3, ZBTB7A (LRF), E2F4, or TFDP1. 

Overall, RNA sequencing further signified that leukemic EVs affect Treg, by global remodeling 

of gene expression, including upregulation of genes responsible for immunosuppressive 

function. Analysis of transcription factor–binding motifs pinpointed a set of transcription 

factors that modulate these changes in Tregs and maybe relevant for immunosuppression in 

myeloid leukemias.  

 

PAPER III 

We developed a drug repositioning pipeline to analyze array-based transcriptomics 

data generated for hundreds of cancer/normal cell lines treated with thousands of drugs in 

the LINCS L1000 project. We used this method to propose the drugs which can promote the 

broad utilization of anticancer peptides (ACPs).  

The LINCS L1000 project as a new gene expression profiling method has provided an 

excellent opportunity to study the mechanism of action of small molecules, functionally 

annotate genetic variants of disease genes, and inform clinical trials by collecting gene 

expression profiles for thousands of drugs at a variety of time points, doses, and cell lines 42. 

Taking the massive amount of data produced by LINCS L1000 into account, parsing the data 

would be computationally intensive. To address this issue, various methods have been 

developed 45, 51 In this study, we developed a new method to extract the desired information of 

the effect of drug treatments in gene level (Figure 1 in PAPER III). In order to validate our 

method, we tackled an existing issue in the field of ACPs. The efficacy of the positively-charged 
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ACPs, as an alternative/complementary strategy to conventional chemotherapy, is inhibited by 

elevated levels of negatively-charged cell-surface components, such as negatively-charged HS 

and CS, which trap the peptides and prevent their contact with the cell membrane and 

consequent pore formation and cell lysis 9. Using our method, we proposed the FDA approved 

drugs which can promote the broad utilization of anticancer peptides by decreasing the level of 

HS and CS. 

To do so, we determined LFC values for drug compared to control for each gene in each 

cancer cell line. LFC describes how much expression values change between these two 

conditions. To find the best statistical method which discovers the most meaningful co-

expression correlations in our datasets, the top 100 and 500 pairs of co-expressed genes from 

A549 LFC matrix were determined by SP, PE, and KE methods and were subjected to GO and 

KEGG pathway analysis (Table 2 in PAPER III). PE outperformed SP and KE based on the 

number of significantly enriched terms (adjusted p-value < 0.05). Concerning the top 100 co-

expressed gene pairs, both KEGG and GO pathway analysis depict better KE performance 

compared with PE and SP. However, looking at the top 500 co-expressed gene pairs, PE depicts 

considerably more enriched terms and generally more involved genes in enriched terms in both 

KEGG and GO pathway analysis. Hence, we chose PE as the reference statistical method to 

compute gene-gene correlations for the remaining cancer cell lines (i.e., HEPG2, HT29, and 

MCF7). 

Considering those gene-gene correlations that appeared in all four cell lines and 

involving genes already known in the literature to be associated with HS and CS 52, top 10 

correlations with each HS and CS lab-validated genes were chosen. Assuming that the in silico-

driven gene-gene associations are common between all four cancer cell lines, biological 

correlations between these genes could be expected. 

To investigate the pathways related to selected genes, we conducted KEGG and GO 

analysis (Figure 3 in PAPER III). GO analysis identified Golgi lumen, which is significant as 

this is where EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus 

and catalyses the synthesis of HS 53. In addition to this, collagen-containing extracellular matrix, 

where HS and CS are available 54 was the highest enriched term. On the other hand, KEGG 

pathway analysis revealed glycosaminoglycan biosynthesis of HS and CS as the top two 

enriched terms. 
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The expression profile of selected HS and CS co-expressed genes were extracted from 

LFCs of all four cancer cells. The heatmap was used to identify the drugs that cause down-

regulation of these genes in all four cancer cell lines. Thus, a list of potential drugs which can 

decrease the level of HS and CS at the surface of cancer cell lines was proposed for further wet-

lab validations (Table 4 in PAPER III). 
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Conclusion 

Cell-type resolution transcriptomic methods, such as single-cell RNA sequencing, spatial 

transcriptomics, bulk transcriptomics from primary sorted cells, and microarray profiles from 

immortalized cell lines, are powerful tools for studying gene expression patterns of cell-types 

and their functional implications. These techniques have provided valuable insights into cellular 

heterogeneity, spatial organization, and the molecular mechanisms underlying various 

biological processes and diseases. It is important to acknowledge that each method presents its 

own set of advantages and challenges that need to be considered in their application.  

In the analysis of human brain tissue, we identified a source of batch effect which was 

incomplete ST profiles of cells, i.e., neurons, larger than thickness of tissue sections. We 

suggested a method, named CSDI, to rectify the incomplete profiles and consequently improve 

spot clustering and label transferring. In the bulk transcriptomics study of primary sorted 

myeloid leukemia cells, we explored the impact of leukemic extracellular vesicles on regulatory 

T cells and gained insights into immunosuppression mechanisms. Furthermore, we developed 

a drug repositioning pipeline using microarray-based LINCS L1000 data to identify potential 

drugs that could enhance the utilization of anticancer peptides. These findings highlight the 

importance of employing advanced computational tools, statistical methods, and domain 

expertise to fully leverage the capabilities of transcriptomics in unraveling the complexity of 

gene expression and its implications in biological systems. 
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