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ABSTRACT IN POLISH

W celu pelnego poznania zlozono$ci systemow biologicznych jakimi sg tkanki
konieczne jest zastosowanie czulych metod umozliwiajacych przeprowadzenie analiz z
rozdzielczo$cia na poziomie pojedynczych komodrek. W ramach niniejszej rozprawy
wykorzystane zostaty réznorodne metody z zakresu analizy transkryptomicznej, takie jak:
sekwencjonowanie RNA z pojedynczych komorek, sekwencjonowanie RNA z homogennegj
puli komorek pierwotnych wyizolowanych za pomocg aktywowanego fluorescencyjnie sortera
komorek, transkryptomika przestrzenna i mikromacierze genowe. Metody te zostaly
zastosowane do analizy ludzkiego mézgu, zbadania funkcji limfocytéw T regulatorowych u
pacjentow z bialaczka szpikowa oraz analizy zestawu danych LINCS L1000, bedacego
wielkoskalowym kompendium profili ekspresji genow z réznych ludzkich linii komérkowych
poddanych dziataniu rozmaitych lekow. Poprzez wprowadzenie odpowiednich zmian w
podejsciach analitycznych dostgpnych obecnie dla wymienionych powyzej metod, podjete
zostalo dazenie do okreslenia wewngtrznej heterogennosci tkanek, rozszyfrowania zaleznos$ci
przestrzennych pomigdzy komoérkami, a takze identyfikacji procesow molekularnych lezacych
u podstaw roznorodnych zjawisk biologicznych, zaré6wno w tkankach zdrowych jak 1 w

procesie chorobowym.

Celem niniejszej pracy byto: 1) przeprowadzenie oceny przydatnosci wybranych
technik laboratoryjnych do identyfikacji réznych typoéw komorek; 2) wykazanie przydatnosci
integracji danych uzyskanych za pomoca ré6znych metod transkryptomicznych; 3) wykazanie
przydatnosci nowych podejs¢ analitycznych do udoskonalenia analiz transkryptomiki
przestrzennej, poznania mechanizméw chorobowych oraz identyfikacji nowych potencjalnych

strategii terapeutycznych.

Wyniki niniejszej pracy przyczynity si¢ do istotnego postepu na polu badan
transkryptomicznych i1 wskazuja jak wazna role w rozszyfrowaniu ztozonosci systemow
biologicznych odgrywa zastosowanie zaawansowanych narz¢dzi obliczeniowych i metod
statystycznych. Analiza profili ekspresji genéw specyficznych dla réznych typow komorek
pozwolita na pehiejsze zrozumienie mechanizmoéw chorobowych 1 moze przyczyni¢ si¢ do
rozwoju medycyny precyzyjnej. W przypadku analizy ludzkiego mdzgu zastosowanie metody
CSDI pozwolito na zidentyfikowanie kompletnych przestrzennych profili transkryptomicznych
komorek. Analiza RNA w puli wysortowanych komorek T regulatorowych poddanych
dziataniu pecherzykow zewnatrzkomorkowych wyizolowanych z osocza pacjentéw z biataczka

szpikowa umozliwila identyfikacj¢ mechanizmoéw immunosupresji, ktére maja krytyczne
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znaczenie dla wynikéw leczenia i przezycia pacjentdow 1 moga by¢ w przyszlosci potencjalnym
celem nowych terapii. Analiza zestawu danych LINCS L1000 pozwolita na identyfikacje
nowych potencjalnych peptydow przeciwnowotworowych, ktéorych aktywnos$¢ zostanie

przetestowana w warunkach laboratoryjnych.

Stowa kluczowe: bioinformatyka, metody analizy z rozdzielczo$ciag na poziomie komorki,
transkryptomika przestrzenna, profilowanie pojedynczych komorek/jader komoérkowych,
mikromacierze genowe, transkryptomika zbiorcza, sortowanie komorek pierwotnych, linie

komadrkowe



ABSTRACT IN ENGLISH

To resolve the complexity of data analysis for biological systems, sensitive methods
with single cell resolution are required. This research endeavors to advance our understanding
of transcriptomic profiling methods, encompassing single-cell RNA sequencing, spatial
transcriptomics, bulk transcriptomics and gene microarray. By improving the current data
analysis approaches for these transcriptomics methods, we seek to decipher intricate cellular
heterogeneity, spatial relationships, and the molecular underpinnings of diverse biological

phenomena.

Our study seeks to achieve three main objectives: firstly, to assess the utility of diverse
wet lab techniques in obtaining distinct cell types; secondly, to demonstrate the feasibility of
integrating and analyzing data from different techniques using transcriptomics methods; and
finally, to showcase the effectiveness of these approaches in enhancing spatial analysis,

unraveling disease mechanisms, and identifying potential therapeutic strategies.

In our study, we utilized scRNA-seq, spatial transcriptomics, primary cell sorting, and
microarray profiling. We used these methods to investigate human brain tissue, myeloid
leukemia cells, and a large-scale compendium of functional perturbations in cultured human
cells, known as LINCS L1000 dataset, respectively. These methods were carefully selected and
executed to provide comprehensive insights into gene expression profiles across distinct

biological systems.

Our findings represent significant advancements in transcriptomic analysis. In our study
of human brain tissue, the introduction of Consecutive Slices Data Integration (CSDI) rectified
incomplete spatial transcriptomic profiles, yielding superior spot clustering and label
transferring. The bulk transcriptomics analysis of primary sorted myeloid leukemia cells
unveiled the impact of leukemic extracellular vesicles on regulatory T cells, unraveling critical
immunosuppression mechanisms. Furthermore, our drug repositioning pipeline, applied to

LINCS L1000 data, unveiled potential drugs to enhance the application of anticancer peptides.

This research underscores the pivotal role of advanced computational tools and
statistical methodologies in unraveling the complexity of transcriptomics. By deciphering cell-
type-specific gene expression patterns and their functional implications, we pave the way for a
deeper understanding of intricate biological systems and diseases. Our work holds promise for

advancing precision medicine and the development of novel therapeutic strategies.



Keywords: Bioinformatics, Cell-type resolution methods, Spatial transcriptomics, Single
cell/nucelli gene profiling, Gene microarray, Bulk transcriptomics, Primary cell sorting, Cell

lines



SUMMARY

Introduction

General introduction

Cells are the fundamental units of life, and can be classified based on their structural
and functional characteristics. In multicellular organisms, cells come together to form tissues.
The composition of tissues and their functions are regulated by the transcription of different
genes. Gene transcription is the process by which the genetic information stored in DNA is
converted into RNA molecules. Thus, understanding the expression patterns of these genes is
crucial for unraveling the molecular mechanisms underlying normal and pathological states of
tissues 1. Previous gene profiling techniques, such as bulk transcriptomics, lacked single cell
resolution. Bulk transcriptomics, which involves sequencing RNA from a population of cells,
averages the gene expression levels across all cells in a tissue. Although combining bulk
transcriptomics with methods such as primary cell sorting can enhance the resolution of cell
gene profiling, using it with a pool of cells obtained from tissue covers the information about
cellular heterogeneity and diversity. This can be particularly problematic when studying tissues
with complex cellular compositions, as rare cell-types or subpopulations of cells may be
overlooked or underrepresented in the data 2. Hence, it is important to pursue new ways to

decompose tissues to cell-types and further profile their expressions separately.

There are multiple approaches to distinguish the expression of particular cell-types such
as working on immortalized cell lines, primary cell sorting, and dissociating the tissue to single
cells and labeling them with gene barcodes. Immortalized cell lines are established and
genetically modified or continuously dividing cultured cells that overcome natural cellular
lifespan, providing an enduring resource for research purposes. Primary cells are cells derived
directly from living organisms, in contrast to established cell lines that have been cultivated and
maintained in the laboratory for prolonged periods. Single-cell RNA sequencing (SCRNA-seq)
method captures and sequences the RNA of individual cells, enabling the analysis of gene
expression at a single-cell level, revolutionizing our understanding of cellular diversity and

dynamics. These methods will be discussed in more details in the following sections.

Immortalized cell lines
An immortalized cell line refers to cells that has acquired the ability to continuously
replicate and divide beyond the typical limitations of normal cells. Normal cells have a limited

lifespan due to a process called cellular senescence and apoptosis, which is regulated by
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mechanisms like telomere shortening and DNA damage responses. Senescence is the process
by which cells irreversibly stop dividing and enter a state of permanent growth arrest without
undergoing cell death. Immortalized cell lines have overcome these limitations and can divide

indefinitely, resembling a more embryonic or stem cell-like state 3.

There are both normal and cancer-derived immortalized cell lines. Normal cell lines are
derived from healthy tissues and are often used in research to study basic cellular processes.
Creating an immortalized cell line from normal tissues involves introducing specific genetic
alterations that bypass cellular senescence and apoptosis checkpoints. This is often achieved by
introducing viral genes (such as EBV, SV40 T antigens and HPV-16 E6/7 gene) or human
telomerase reverse transcriptase (hTert)) and oncogenes (like c-Myc) into the cells 4. Another
method is employing a lentiviral vector library encoding several of aforementioned genes
(Figure 1A). These genes have the capacity to either inhibit the function of tumor suppressor
genes or activate oncogenes, thus stimulating cell division and extending the cell's lifespan.
Furthermore, primary cells may undergo mutations during the process of division and
multiplication. Their spontaneous mutations that occur over multiple cell culture passages can
ultimately result in cellular immortalization. This phenomenon of cell immortalization resulting
from spontaneous mutations is commonly referred to as "spontaneous immortalization™ *°
(Figure 1B). But this method is inefficient in making normal immortalized cell lines as these
cells will transform into the tumor cells in most cases. There is a basic difference between tumor
cells and normal immortalized cells. Tumor cells have many classical characteristics such as
losing contact inhibition, low adhesive ability, and apoptosis inhibition, while immortalized

normal cells remain their normal genotype and phenotype “.

Cancer-derived immortalized cell lines are derived from cancerous tissues and maintain
the characteristics of the original tumor, making them valuable tools for cancer research and
drug testing. These cells already possess alterations that have allowed them to bypass
apoptosis/senescence and divide in an uncontrolled manner. Researchers can culture and
propagate these cells under controlled conditions to establish immortalized cell lines that

represent the characteristics of the original cancer °.
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Third
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A . Fourth Malignant cells
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v

Primary Cell, Stem Cell Immortalized Cells
Figure 1. Cell immortalization; A) introducing genes, which can activate an oncogene or suppress
the activity of tumor suppressor gene and promote cell division; B) by spontaneous mutation in the

process of dividing and multiplying (adopted from creative bioarray; https://www.creative-

Working on cell lines provides a cost-effective approach, offering the advantage of
studying cells in a controlled environment. However, cell lines may not fully represent the
biology of the original tissue, and they may be subject to genetic drift or other changes over
time’. Accumulation of genetic changes may cause genetic and phenotypic heterogeneity in
different cells of the same cell line as every cell division can introduce a number of different
mutations. It can eventually lead to differences in characteristics such as growth rate, response
to stimuli and gene expression profiles. In addition, certain immortalized cell lines may have
specific requirements for culture conditions, such as specific media formulations, growth
factors, or supplements. Some cell lines may exhibit a slow growth rate, be more sensitive to
changes in culture conditions, or require specialized techniques for successful propagation®.

Cancer cell lines serve as invaluable tools with diverse applications in drug discovery.
These cell lines, which are derived from various cancer types, provide researchers with a
simplified yet representative model of the complex cellular and molecular characteristics of
cancers. Their ability to be cultured and manipulated in the laboratory setting allows for
efficient screening of compounds, assessment of drug efficacy, and investigation into the

underlying mechanisms of cancer development and progression °. Drug repositioning, also
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known as drug repurposing, constitutes a strategic approach to drug discovery wherein existing
drugs that were originally developed for one medical condition are identified and repurposed
for the treatment of another condition. This approach capitalizes on the known pharmacological
profiles of these drugs, potentially accelerating the drug development process and minimizing
risks associated with safety and efficacy. Drug repositioning is particularly relevant to cancer
research due to the intricate nature of cancer biology and the urgent need for effective therapies.
By using cancer cell lines, researchers can screen a variety of existing drugs against these cell

lines to identify compounds with unexpected anti-cancer properties °.

In the context of drug repositioning, one effective method to assess the impact of drugs
on cell lines involves the sequencing of treated and untreated cell lines to investigate their
response. Among the cost-efficient techniques available, microarray stands out as a reasonable
option. Microarrays are versatile tools that have revolutionized various fields of molecular
biology and genomics, enabling high-throughput analysis of a multitude of biological
molecules. Within the realm of microarray technology, there are several distinct types including
Chromatin immunoprecipitation microarrays (ChIP-chip) °, Genomic DNA Microarrays %,

12

gene Expression Microarrays and protein Microarrays * highlighting their unique

applications and functionalities.

Chromatin Immunoprecipitation Microarrays (ChIP -chip) ° merge chromatin
immunoprecipitation (ChIP) with microarray technology to map protein-DNA interactions
across the genome. By selectively isolating DNA fragments associated with specific proteins
and analyzing them on a microarray chip, researchers gain insights into gene regulation and

epigenetic modifications. Genomic DNA Microarrays !

are designed to detect genetic
variations within an organism's DNA, including copy number variations (CNVs) and single
nucleotide polymorphisms (SNPs). They are invaluable for genotyping studies, helping
researchers explore genetic distinctions among individuals, populations, or species, and
unraveling the genetic underpinnings of various biological phenomena. Gene Expression
Microarrays 12 enable the simultaneous measurement of thousands of genes within a biological
sample, shedding light on gene activity under specific conditions. They are instrumental in
transcriptomics research, facilitating the comprehension of mMRNA expression patterns in
response to environmental cues, treatments, or developmental stages. Their applications span
diverse domains, including identifying disease biomarkers, probing gene regulation networks,
and characterizing intervention or environmental impacts. Protein Microarrays = provide a

platform for the systematic examination of protein interactions, binding partners, and
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expression levels. They enable the profiling of specific proteins or antibodies in biological
samples, aiding in the elucidation of protein-protein interactions, antigen-antibody
relationships, and protein expression patterns. These microarrays find applications in
proteomics research, biomarker discovery, and drug development, offering insights into the
complexities of protein biology. These diverse microarray methods are invaluable in advancing
our understanding of biological processes and are indispensable tools for researchers across

various scientific disciplines.

Gene expression microarray is ideal for investigating the effect of drugs in the context
of drug repositioning. The analysis begins with the extraction of RNA from both treated and
untreated cell lines. This RNA is then converted into labeled complementary DNA (cDNA)
using reverse transcription. The cDNA is then applied to the microarray chip, where it
hybridizes with the immobilized probes. After washing to remove any non-specific binding, the
chip is scanned to quantify the intensity of fluorescent signals, revealing the level of gene
expression (Figure 2). The obtained data is then subjected to rigorous bioinformatics analysis
to identify differentially expressed genes, which may indicate the impact of the drugs on the
cellular pathways. This approach allows researchers to profile how specific drugs influence the

cellular response at the molecular level 4,

Untreated cell line Treated cell line

DNA Microarray

Q Cell types ‘
. Not present in cells O In treated cell only

l O Present in both cells . In untreated cell only
“ Culture “
NANN NNAN : . NANN NN
ANAN NANAN RNA isolation ANAN AANAN
AN NN Reverse transcription

AN NND
AN NN and fluorescent tagging AN/ B

|

Hybridization
onto microarray

Figure 2. A general scheme of the methodology of gene expression microarray method in the
concept of drug repositioning. RNA is extracted from treated and untreated cell lines and converted

into fluorescent labeled cDNA. The cDNA is applied to a microarray chip, where it hybridizes with
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immobilized probes. The chip is scanned to quantify fluorescent signals, revealing differences in gene

expression levels between treated and untreated cells in downstream bioinformatics analysis.

Primary cell sorting

Primary cell sorting involves physically separating cells based on specific
characteristics, such as size, shape, surface markers (usually surface proteins), combined with
fluorescent labeling. This method is highly accurate and can isolate cells with high purity *°.
However, primary cell sorting is also labor-intensive and can be relatively expensive, especially
if specialized equipment is required 6. Some protein markers lack specificity, and employing
them for cell sorting leads to contamination by inclusion of undesired cell types. In addition,
some cells do not have unique surface protein markers 1’. Besides, factors like cell stress,
physical manipulation, or exposure to certain reagents during the sorting process can induce

alterations in gene expression levels 8,

There are many methods of cell sorting, each with its own principles and applications.
One of the most popular is Fluorescence-Activated Cell Sorting (FACS) employs fluorescent
labels to bind to cell surface markers, enabling sorting based on distinct fluorescence patterns
(Figure 3). FACS is a pivotal technique in modern cell biology and immunology that enables
the isolation and purification of specific cell populations based on their distinct fluorescent
properties. FACS combines flow cytometry and cell sorting technologies to analyze and sort
individual cells from heterogeneous populations with remarkable precision. The process
involves labeling target cells with fluorescent markers that bind to specific molecules, such as
antibodies binding to cell surface proteins or dyes targeting intracellular components. As cells
flow through a narrow stream in a flow cytometer, they pass through a laser beam that excites
the fluorescent molecules, causing them to emit light at characteristic wavelengths. The emitted
light is then detected and measured, providing information about the cells' fluorescence
intensity and distribution. FACS takes this a step further by allowing the real-time sorting of
cells based on their fluorescence properties. Electrically charged plates situated near the stream
of cells generate an electric field that can deflect individual cells into separate collection tubes,
effectively isolating the desired subpopulations for further analysis or experimentation. This
technique has numerous applications in immunology, cancer research, stem cell studies, and
various other fields, where the isolation of specific cell types is critical for advancing our

understanding of cellular processes and disease mechanisms.
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Figure 3. The principle of Fluorescence-Activated Cell Sorting. Each cell is channeled into a
distinct droplet upon exiting the nozzle, and this droplet is electrically charged according to the cell's
fluorescence. Employing deflection plates, the machine guides cells towards designated collection
tubes. For instance, cells stained with Fluorescein isothiocyanate (FITC) and held within droplets
receive a positive charge, prompting their attraction to the left and collection in corresponding tubes.
Conversely, cells stained with PE and enclosed in droplets acquire a negative charge, propelling them
towards the right for collection. Following sorting, the isolated cell populations are subjected to further
analysis for verification, after which the sorted cells can be cultivated for subsequent experiments.

Figure adopted from https://www.abcam.com

Some other examples of primary cell sorting are: Magnetic-Activated Cell Sorting
(MACS) uses magnetic beads coated with antibodies to separate cells with specific markers.
Microfluidic Cell Sorting uses intricate channel networks to manipulate cells by physical
properties like size. Dielectrophoresis (DEP) Sorting uses electric fields to sort cells based on
their electrical characteristics. Pneumatic Cell Sorting relies on pressure differentials in
microfluidic channels to sort cells gently. Finally, Density Gradient Centrifugation separates
cells by their buoyant densities using centrifugal forces. These methods enable precise isolation

of specific cell types, or sub-cellular structures for diverse applications?®.
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Single cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is a cutting-edge molecular biology
technique that enables the comprehensive analysis of gene expression profiles at the individual
cell level within complex biological systems. Unlike traditional bulk RNA sequencing that
averages gene expression across populations of cells, sScRNA-seq dissects heterogeneity by
isolating and sequencing the RNA content of individual cells. One of the widely used sSCRNA-
seq platforms is 10xGenomics Chromium. This technology involves the isolation of single
cells, the conversion of their RNA into complementary DNA (cDNA), and subsequent
amplification and sequencing of this cDNA. By identifying the unique gene expression patterns
of thousands of individual cells, ScRNA-seq provides insights into cellular diversity, cell states,
developmental trajectories, and disease mechanisms. The resulting data generates high-
dimensional datasets that demand sophisticated computational analyses to uncover meaningful
biological information, advancing our understanding of cellular biology with unprecedented

granularity®.

Pool

Collect RT Remove Oil ‘

er00000 8 00

—\ i ) N N | \

10x Barcoded Cells Oil ) ;

Gel Beads Enzyme )
= C

\

@,

. D
‘
Single Cell 10x Barcoded 10x Barcoded
GEMs cDNA cDNA

Figure 4. Schematic view of 10xGenomics single cell RNA sequencing Chromium
workflow. Individual cells (or nuclei) are combined with reagents and a solitary Gel Bead that
contains uniquely barcoded oligonucleotides. These components are confined within nanoliter-sized
Gel Bead in Emulsion (GEM) droplets using the GemCode™ Technology. Within each GEM, cellular
lysis occurs, and barcoded reverse transcription is conducted on polyadenylated mRNA from each
individual cell. This process takes place simultaneously within multiple GEMs. Following these steps,
high-quality next-generation sequencing libraries are generated collectively in a single reaction and are

compatible with Illumina sequencers. Image provided by 10x Genomics.

Based on the length and location of the start site of gene capturing in sequencing of
cDNA, scRNA-seq can be distinguished to full-length, 3' End and 5' End. Full-Length sScRNA-
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seq captures entire RNA molecules. This method's ability to sequence full transcripts enables
the identification of various gene isoforms, alternative splicing and intricate expression
regulation. These advantages make this approach valuable for studying cellular heterogeneity
and gene regulation complexity. However, it is technically demanding and resource-intensive
due to the requirement for full-length cDNA synthesis and specialized sequencing equipment.
On the other hand, 3' End scRNA-seq focuses on the 3' end of transcripts, allowing higher
throughput and reduced complexity. While it provides less information about isoforms and
splicing, it is cost-effective for profiling gene expression across many cells. Similarly, 5' End
scCRNA-seq targets the 5' end to uncover transcription start sites, promoter usage, and regulatory
events. This method is valuable for understanding transcriptional initiation and regulatory

elements while remaining cost-effective and suitable for large-scale studies?..

Different methods for single cell RNA profiling are available. Smart-seq methods,
exemplified by Smart-seg2, involve full-length sequencing of individual cells, providing
comprehensive insights into gene expression, including isoforms. This approach is ideal for
full-length gene capturing. Drop-seq, on the other hand, employs microdroplets to encapsulate
single cells with barcoded primers, capturing the 3' end of transcripts and enabling high-
throughput gene expression profiling. Similarly, the 10x Genomics Chromium System utilizes
gel bead-based partitioning within droplets to encapsulate cells and barcoded beads,
predominantly capturing the 3' end of transcripts and facilitating high-throughput sequencing
for gene expression analysis?. Single cell profiling is also available through single-nuclei RNA
sequencing (snRNA-seq) which use only nuclei instead of whole cells. Using snRNA-seq has
advantages over SCRNA-seq. This is because the process of tissue cryopreservation ruptures the
cell membranes; however, nuclear membranes remain intact during the freeze—thaw cycle.
Furthermore, it has been shown that the RNA-seq of single nuclei is highly representative of
transcriptional profiles from the entire cells. However, since it focuses on nuclei, information

about cytoplasmic RNA and cell morphology is lost 22,

scCRNA-seq/snRNA-seq is relatively expensive, and data analysis is complex and time-
consuming 2%. For instance, preprocessing the data involves quality control, filtering, and
normalization. To handle the high-dimensional nature of the datasets, dimensionality reduction
techniques become essential. Identifying cell-types within the data can be intricate due to rare
cell-types and subtle differences Finally, interpretation of the results necessitates expert
knowledge to relate gene expression patterns to known functions or biological processes.
Addressing these challenges involves employing advanced computational tools, statistical
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methods, and domain expertise to gain deeper insights into cellular heterogeneity and spatial

organization 2.

Spatial transcriptomics

Spatial transcriptomics (ST) is an advanced molecular technique that provides a
spatially contextualized understanding of gene expression within complex tissues, facilitating
the mapping of molecular activity in its native spatial arrangement. While scRNA-seq focuses
on analyzing gene expression profiles at the single-cell level, irrespective of spatial location,
ST preserves the spatial context by capturing RNA molecules directly from tissue sections,
utilizing spatially barcoded arrays. This enables the identification of gene expression profiles
within a small number of cells while retaining their positional information. Using the
advantages of sScRNA-seq (higher resolution in distinguishing cells) and ST (preserving spatial
information) one can combine these two methods to track the spatial location of single cells

more accurately.

The 10x Genomics Visium is one of the widely used methods for ST begins with
receiving the tissue, which can be either fresh frozen or embedded in optimal cutting
temperature (OCT) blocks. Tissue sections are then cut and mounted onto specially designed
Visium arrays. Reverse transcription reagents are added to the tissue sections, capturing
polyadenylated mRNA. During this step, spatial barcodes are incorporated into the cDNA,
preserving the spatial information of each transcript. The tissue sections are then dissociated
from the arrays, and the cDNA is pooled and amplified. The resulting cDNA libraries are
sequenced using next-generation sequencing technology. The sequencing data is processed
using computational tools provided by 10x Genomics, aligning the reads to a reference genome
while retaining the spatial information from the barcodes (Figure 5). This yields a spatially
resolved gene expression profile, allowing researchers to map gene expression patterns within

the tissue and gain insights into its molecular and cellular composition.
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Figure 5. A schematic view of the 10x Genomics Visium ST protocol. It requires either

fresh frozen tissue or OCT embedded tissue with intact morphology and high RNA quality, with a
maximum tissue block size of 6.5x6.5 mm (the fresh frozen protocol is illustrated here). Each block
contains around 5000 barcoded spots with 55um diameter and 100um distance from center to center

between neighboring spots.

In 10x Genomics Visium Spatial Transcriptomics, each probe of barcoded spots (Figure
5) serves a specific purpose. Partial read 1 captures a portion of the gene or transcript sequence
within the spot, revealing the genes present. The spatial barcode uniquely identifies the spot's
location, allowing for spatial mapping of gene expression. Unique molecular identifiers (UMIs)
distinguish between multiple copies of the same mRNA molecule, ensuring accurate
quantification. Finally, the Poly(dT) sequence captures the polyadenylated tails of mRNA
molecules, facilitating the isolation and sequencing of mMRNA, all of which collectively enable

the acquisition of spatially resolved gene expression data within a tissue or sample .

ST encounters significant challenges including the difficulty of accurately detecting
low-expression transcripts due to limited sensitivity, as well as the complex task of precisely
identifying distinct cell types within tissues, especially closely related subtypes because of low
spatial resolution. The intricate nature of ST datasets, characterized by high-dimensional
information, demands advanced computational expertise for meaningful analysis and
interpretation. Biases arising from sample preparation procedures, such as tissue handling and
staining variability, can impact the quality and reproducibility of results. Moreover, ST
experiments can be resource-intensive, involving substantial costs and longer timeframes, while
offering lower throughput than traditional bulk RNA sequencing. The inherent heterogeneity
of tissues poses a challenge in capturing the full cellular diversity comprehensively. Validating

ST findings and ensuring reproducibility can be hindered by the absence of well-established
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reference datasets for spatial transcriptomics, making it essential to work towards refining the
technique to overcome these challenges and unlock its full potential. The challenges and

solutions for different ST platforms will be discussed in more details in the following sections.

Challenges and solutions
PAPER |

Despite the insights provided by scRNA-seq and ST methods into cell-type
heterogeneity, spatial distribution of cells and their gene expression, there are several challenges
associated with data generation and analysis. Although ST is a powerful new technique for
capturing patterns of spatial distribution of gene expression, it also has a drawback of its design.
A 10x Genomics Visium Gene Expression slide used for ST experiments consists of two or
four tissue-capture areas (6.5 mm x 6.5 mm), divided into 4992 spots, each 55 um in diameter.
Every spot contains oligonucleotide probes with unique sequence barcodes that encode spatial
information of gene expression data. Due to their size, spots may encompass the expression
profiles of several cells. Consequently, this diminishes the accuracy of distinguishing
neighboring cell-types. While the Visium platform is one of the widely used approaches in
spatial transcriptomics, there are other techniques and platforms available, such as Slide-seq ¢,
MERFISH 27, STARmap 28 and Xenium %, Slide-seq also face similar limitations as Visium in
capturing single-cell data. For both Visium and Slide-seq, this can be addressed by several
methods including integration with other sScRNA-seq datasets 22 %, MERFISH, STARmap and
Xenium provide higher spatial resolution than Visium and Slide-seq. However, these three
methods require the design and synthesis of specific oligonucleotide probes for targeted RNA
detection, which can be challenging. Despite the complexity, MERFISH, STARmap and
Xenium enable the identification and localization of individual cells and their gene expression
profiles at subcellular levels. On the other hand, Visium and Slide-seq generally offer higher
throughput compared to the MERFISH, STARmap and Xenium.

For different tissue types, 10x Genomics recommend specific tissue thicknesses to be
studied using Visium platform. Choosing the thickness beyond this recommendation for
different purposes such as easier sectioning, may have drawbacks. For instance, using
hematoxylin and eosin (H&E) staining for tissue sections out of the recommended thickness
range may lead to reduced quality and accuracy of the staining. This is particularly evident
when dealing with thicker tissues, as the H&E stain struggles to evenly penetrate and distribute
throughout the tissue. Consequently, uneven staining and poor visualization of cellular

structures can occur, adversely affecting the accuracy and reliability of downstream analyses®!.
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Besides, thicker tissues are more challenging to permeabilize uniformly. This difficulty arises
because MRNA extraction requires the use of chemicals to break down cell membranes and
release the mMRNA molecules, which can be less effective in penetrating thicker tissues. As a
result, mMRNA extraction efficiency may decrease with increasing tissue thickness, leading to

lower quality data and reduced sensitivity in downstream analyses 2.

While selecting the recommended tissue section by 10x Genomics for certain tissue types has
its benefits, there are also potential drawbacks. In addition to the previously recognized two-
dimensional challenges associated with the larger size of spots compared to cells in ST, we
have identified three-dimensional issues related to the volume of specific cell-types. For
instance, when working on the tissue obtained from human brain, the recommended tissue
thickness by 10xVisium is 10 um while the size of neuronal nuclei in the human brain is around
20 um. Consequently, the obtained ST data lack the full profile of neurons due to the incomplete
incision of neuronal cells during the cryosectioning process of 10xVisium protocol. Increasing
the tissue thickness to capture the full profile of neurons presents challenges related to staining
and permeabilization. Therefore, it is essential to explore alternative approaches to address this

issue effectively.

In spatial transcriptomics, consecutive tissue sections refer to the sequential slicing of a
tissue sample into thin sections to study the spatial distribution of gene expression patterns. By
examining gene expression profiles across multiple sections, researchers can gain insights into
the distribution and arrangement of different cell-types within the tissue. The goal is to identify
and characterize similar patterns of cell-types across the sections, which provides information
about tissue architecture, cell-cell interactions, and the spatial context of gene expression
patterns. Furthermore, there is another crucial shared characteristic among consecutive tissue
sections that can help address the challenge of incomplete profiling of neurons in the human
brain. Consecutive slices have complementary transcriptomics information that can be used to
rectify neuronal profiles. To do so, the current analytical pipelines for ST data analysis needs

to be improved to correct incomplete gene expression of cells before downstream analysis.

PAPER II

Chronic and acute myeloid leukemia (CML/AML) evade immune responses and induce
immunosuppression. Patients with CML and AML exhibit dysfunctional immune cells (CD8+
T cells, NK cells) alongside suppressive myeloid cells and immunosuppressive regulatory T
cells (Tregs). High Treg levels predict poorer treatment outcomes and shorter survival. While

targeting Tregs directly for elimination seems beneficial, it's challenging and may cause
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autoimmune adverse events. ldentifying factors that drive Treg expansion in leukemias offers
a potential alternative target. Extracellular vesicles (EVs), essential for intercellular
communication, play a crucial role in immune modulation. In solid tumors, EVs inhibit T cell
activity and promote Treg expansion. In myeloid neoplasms, including leukemias, EVs from
leukemic cells enhance leukemic growth, drug resistance, and modify the bone marrow niche.
AML-derived EVs have shown to inhibit CD8+ T cell function, yet the role of EVs in promoting

Treg expansion has been less explored?®.

To study the effect of EVs on Tregs, selecting the best approach is crucial. SSRNA-seq
is a powerful technique and provides high-resolution insights into cellular heterogeneity and
can reveal previously unseen subpopulations within a cell type. However, one of the limitations
of scCRNA-seq is the relatively lower number of genes that can be captured per cell compared
to total captured genes in bulk transcriptomics. This limitation arises from the technical
challenges of amplifying and sequencing RNA from single cells, which can lead to incomplete
coverage of the transcriptome®. On the other hand, bulk transcriptomics has a high coverage
for capturing gene profiles from the tissue but lacks the single cell resolution. To address this
challenge, primary cell sorting can be combined with bulk transcriptomics to offer a
comprehensive overview of gene expression in a specific cell type. This approach is valuable
when investigating the global changes in gene expression within a cell population under a
specific condition. Hence, the combination of primary cell sorting and bulk transcriptomics

offers a more comprehensive view of the effect of EVs on Tregs compared to SCRNA-seq.

PAPER III

The sequencing of the human genome has revolutionized our understanding of genetics
and disease, allowing us to identify genetic risk factors for various conditions. However, having
a list of genes associated with diseases is not enough to fully comprehend their roles and
mechanisms. To gain deeper insights, researchers need to understand how genes function within
cells. This requires perturbing genes and observing the resulting effects.

Connectivity Map (CMap) is a resource of the profiles of 3 cancer cell lines treated with
164 drugs using Affymetrix microarray. Before CMap, comprehensive resources for studying
the effects of genetic and chemical perturbations on cells have been lacking. CMap improved
our insights of how genes and chemicals influence cellular functions. It leverages a
compendium of gene expression profiles, which are like snapshots of the activity levels of genes
in different conditions. By comparing these profiles, researchers can uncover connections

between genetic and chemical perturbations that might otherwise go unnoticed. Examples of
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CMap use include the anthelmintic drug parbendazole as an inducer of osteoclast
differentiation®, celastrol as a leptin sensitizer®®, compounds targeting COX2 and ADRA2A as
potential diabetes treatments®®, small molecules that mitigate skeletal muscular atrophy®’ and
spinal muscular atrophy®®, and new therapeutic hypotheses for the treatment of inflammatory
bowel disease® and cancer*®. However, the challenge lay in generating a comprehensive dataset
due to the high cost of traditional gene expression techniques. To address this, LINCS L1000
was introduce, a high-throughput and cost-effective approach to gene expression profiling.

Library of integrated network-based cellular signatures (LINCS) currently comprises of
over two million gene expression profiles of chemically perturbed human cell lines at a variety
of time points and doses *'. These data were produced using the LINCS L1000 method, which
is an array-based transcriptomic profiling and measures a reduced representation of the
transcriptome (~1000 genes called landmarks) and the rest of the transcriptome will be imputed.
It has been shown that L1000 is highly reproducible, comparable to RNA sequencing, and
suitable for computational inference of the expression levels of 81% of non-measured
transcripts*. An instance of possible challenges for using the LINCS L1000 profiles is that
providing such a huge amount of data requires computationally intensive approaches for data
mining. Therefore, developing a systematic method to accurately and efficiently extract the

relevant information of effect of drug treatments is crucial °.
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Aims

The purpose of the presented study was:

» To assess the usefulness and benefits of different wet lab techniques in obtaining

distinct cell types. This exploration encompassed the examination of various
methods, such as vectorizing tissue sections and dissociating tissues as two
separate methods (PAPER 1), performing primary cell sorting (PAPER 11), and
using immortalized cells (PAPER 111).

To demonstrate the feasibility of utilizing transcriptomics methods to integrate
and analyze data obtained from different wet lab techniques. For instance,
aligning the information for each cell-type to the associated coordinates in
vectorized tissue sections (ST), employing gene barcode labeling for cell
profiling and categorization (scRNA-seq) (PAPER 1), gene profiling in bulk
derived from separated cell-types using primary cell sorting (PAPER II) and
finally, using probe hybridization to capture a subset of genes in immortalized
cell lines (PAPER 111).

To showcase the effectiveness of these transcriptomic approaches in enhancing
spatial analysis (PAPER 1), unraveling disease mechanisms (PAPER 1I), and
identifying potential therapeutic strategies (PAPER I11).
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Material and Methods

In our three studies ® > 22, we addressed three different approaches to obtain cell-type
resolution of transcriptomics profiles. These methods include scRNA-seq combined with ST to
study human brain (PAPER 1) 22, primary cell sorting and bulk transcriptomics downstream
analysis on CML Tregs (PAPER I1) ¥, and array-based transcriptomics profiles generated by
LINCS L1000 method (PAPER I11) #* from various immortalized cancer cell lines °.

PAPER I: scRNA-seq and ST of postmortem brain samples

In terms of the scRNA-seq and ST methods, we utilized the modified 10x Genomics
Visium Spatial Gene Expression method to analyze the profiles of consecutive sections from
fresh-frozen brain tissues. Accordingly, we used the orbitofrontal neocortex (ON) and temporal
neocortex (TN) samples from two subjects. Both subjects were considered healthy controls, as
the aim was to investigate the reputability of our findings in this research in different subjects.
Tissue specimens were provided by Harvard University and Massachusetts Alzheimer’s
Disease Research Center and all experimental procedures were conducted in accordance with
Independent Bioethics Committee for Scientific Research at Medical University of Gdansk
(consent No. NKBBN/564-108/2022). The brain-tissue slices were placed onto a Visium Gene
Expression slide (10x Genomics) and fixed according to the 10x Genomics protocol (doc.
CG000239 Rev. C). Next, the slides were divided into two via a piece of silicone gasket.
Subsequently, we stained the tissue by two methods; hematoxylin and eosin, as well as
combination hematoxylin and Congo red; the latter designed to detect possible amyloid
deposits. We imaged the slides at 20x magnification using brightfield settings (Olympus
cellSens Dimension software). Afterwards, the tissue was permeabilized, using conditions
described in manufacturer protocol. The mMRNA was released and bound to spatially barcoded
capture probes on the slide. Next, cDNA was synthesized from captured mRNA, and
sequencing libraries were prepared. Samples were loaded and pooled according to the protocol
(doc. CG000239 Rev C) and sequenced in the standard Illumina pair-end constructs, using
[llumina’s NextSeq 550 System. Data pre-processing was done using SpaceRanger to first,
convert (from BCL to fastq format using spaceranger mkfastgc function) and second, align the
obtained profiles to reference genome (GRCH38) and calculate the number of gene counts
(spaceranger count function). SpaceRanger is a computational tool designed to preprocess and
analyze spatial transcriptomics data generated by the 10x Genomics Visium platform (Figure
5). It performs data organization and quality control to transform complex, raw data into a

structured format, allowing researchers to examine gene expression patterns across different
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regions of a biological sample. Essentially, it's a crucial tool for unraveling how genes are active
in specific locations within tissues or samples. The raw gene counts were processed using
Seurat (version 4.0.3). Seurat is an R package used in genomics to analyze individual cells. It
helps researchers understand how genes behave in different cells, identify cell types, and gain
insights into various biological processes, making it a valuable tool for studying diseases and
development. The spatial transcriptomics data used in this study are available at the GEO data

repository under the GSE184510 accession number and are accessible upon request.

We hypothesized that using single tissue sections of human brain in ST analysis, there
Is a source of batch effect which originates from incomplete neuronal gene profiles. This is
because of the larger size of neuronal nuclei in comparison with the thickness of tissue slices
and can be corrected using consecutive slices data integration (CSDI). To test this hypothesis,
we used Seurat R package to perform dimensionality reduction (RunPCA and RunUMAP Seurat
functions with default parameters), clustering (FindClusters Seurat function with default
parameters) and label transferring from snRNA-seq datasets to ST before and after CSDI (to
see the parameters and utilized functions see ??). Dimensionality reduction in Seurat is a
computational technique that simplifies intricate single-cell genomics data by compressing it
into a lower-dimensional format while preserving essential information. It enables researchers
to create visualizations and plots that reveal hidden patterns, identify distinct cell types, and
highlight critical genes influencing cellular behaviors. This streamlined representation
facilitates the understanding of complex biological processes, such as disease mechanisms or
tissue development, by providing a more interpretable view of gene expression within
individual cells, ultimately enhancing the insights gained from single-cell genomics datasets.
For label transferring and deconvolution of ST spots, we used publicly available shnRNA-seq
dataset (deposited in GEO with GSE129308 accession number) as RNA-seq of single nuclei is
highly representative of transcriptional profiles from the entire cells > We introduced CSDI as
a complementary method for data correction with the potential of removing unknown batch
effects.

PAPER II: primary cell sorting of CML Tregs

Plasma (source of primary EVs) was obtained from whole blood of 10 leukemic (7 CML
and 3 AML; before starting treatment and at diagnosis) patients. EVs from plasma were first
isolated by size exclusion chromatography. Then EVs were further isolated using differential
ultracentrifugation protocol, cell culture conditioned medium was first centrifuged at 160xg (5
minutes), 320xg (5minutes) and 1300xg (20 minutes), to deplete cells and cellular debris.
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Further, high-speed ultracentrifugation steps were performed: 10.000xg for 40 minutes to
deplete medium/large EVs, 100.000xg for 90 minutes to pellet small EVs, after which EVs
were resuspended in PBS and washed by another ultracentrifugation step, for 90 minutes at
100.000xg. Ultracentrifugation was performed using 45Ti fixed-angle rotor and Optima XPN-
100 ultracentrifuge (Beckman Coulter).

Human lymphocytes were obtained from buffy coats of healthy donors (different donor
each experiment) from the Regional Center for Blood Donation and Blood Care in Warsaw,
Poland (in accordance with the Declaration of Helsinki and Polish regulations). Peripheral
blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation
(Lymphoprep, STEMCELL). T cells, including Tregs, were sorted using BD FACS Aria Il.

Regulatory T cells (Tregs) from ex vivo cultures, treated with CML EVs (from three
patients) and nontreated (from three patients), were sorted to obtain pure population of viable,
CD4*CD25"CD127" Tregs. Viability of sorted cells was verified at 97%. Sorted cells were
washed and frozen in TRI Reagent (Sigma-Aldrich). RNA was isolated using Total RNA Mini
column purification kit (A&A Biotechnology). Sequencing libraries were prepared using NEB
Next Ultra 1l Directional RNA library prep kit for Illumina. Samples were sequenced using
Ilumina NextSeq 500, 75-bp single-end reads (Genomics Core Facility at EMBL, Heidelberg).
The sequenced reads were aligned to hg38 genome using Hisat2 (version 2.1.0) with default
settings. The numbers of reads aligned to each gene and the differential expression were
computed with python HTSeq script (version 0.11.2) and DESeq2 R package (version 1.28.1),
respectively. Genes that had significant (adj. p-value < 0.05) changes in their expression levels
(log-fold-change>1) were called differentially expressed. The Gene Ontology analysis was
performed with Bioconductor package Clusterprofiler (version 3.16.1). Analysis of
transcription factor binding motifs (TFBM) was performed using PSCAN software, by
referencing -950 to +50 bp regions of DEGs to JASPAR 2018_NR database. JASPAR is a well-
known open-access database of transcription factor binding profiles. It provides information
about the DNA binding preferences of transcription factors, which are proteins that regulate
gene expression. Researchers use JASPAR to study how transcription factors interact with
specific DNA sequences, which is crucial for understanding gene regulation. The gene
expression data are available under GEO number GSE180883.
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PAPER II11: developing pipeline for data extraction from LINCS L1000 database

In the third project, we benefited from the data generated by LINCS L1000 platform.
Subramanian et al. 2017 *! as part of the NIH LINCS Consortium, developed a new, low-cost,
high throughput reduced representation expression profiling method that is termed L1000. With
the LINCS L1000 platform, now more than 2 million profiles from hundreds of cells and

4 In this method, a reduced

thousands of drug perturbagens are publicly available
representation of the transcriptome (~1000 genes called landmarks) are measured and the rest
of the transcriptomics are imputed. Apart from its high reproducibility and comparability to
RNA sequencing, Subramanian et al. 2017 showed the method’s potential in discovering the
mechanism of action of small molecules, functionally annotating genetic variants of disease

genes, and providing valuable insight for clinical trials *..

From the LINCS L1000 database, we aimed to retrieved normalized gene expression
profiles of landmark genes and imputed transcripts for four different cancer cell lines including
A549, HEPG2, MCF7, and HT-29, treated with drug in comparison to control (DMSQO). To
achieve this objective, we utilized the Slinky R package (version 1.8.0) to parse normalized
gene expression profiles of landmark genes and imputed transcripts for a total of 12,328 genes
and over 900 drugs in each of the four cancer cell lines.*. In our work, we extracted the data
for both control (treated with DMSO) and experimental conditions (treated with various drugs)
with the highest standard dose (10 pm) and longest time points (24 h). Log fold changes (LFC)
were computed through the NumPy library (version 1.19.1) in Python 3.7.6. To avoid undefined
LFC values due to division by zero or log2 transformation of non-positive numbers, one was
added to gene expression values for both treatment and control before transformation. As a
result, we produced LFCs for four different cancer cell lines across about 12,000 genes and 900
drugs. Using the LFC matrixes as an input, we developed a method to extract the drug
information which can deregulate particular genes of interest (Figure 1 in PAPER I11I). To test
our pipeline, we investigated the drugs that can decrease the level of Heparan Sulfate (HS) and
Chondroitin Sulfate (CS) at the surface of all four cancer cell lines to improve the performance

of anticancer peptides.

To find a reference statistical method to compute gene-gene correlations, three methods
(Spearman (SP), Pearson (PE), and Kendall tau (KE)) were evaluated using the A549 LFC
matrix. Top 100 and 500 co-expressed gene pairs were subjected to functional analysis. The
method which produces the most enriched terms in both Gene Ontology (GO) and KEGG
pathway analysis was chosen as the reference statistical method. The reference statistical
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method was applied to all four cancer cell lines. The correlations with experimentally validated
HSand CS genes were extracted. As the first filtration step, only common co-expressed genes
with experimentally supported HS and CS genes in all four gene-gene correlation data frames
(corresponding to four cancer cells) were considered. The expression profiles of these genes
were extracted from LFC matrixes of all four cancer cell lines. Drugs that resulted in significant
upregulation or downregulation of the majority of the selected genes were categorized into two
separate data frames: one for downregulated genes and another for upregulated genes. As the
second filtration step, drugs that jointly led to up or down-regulation of most selected genes in
all four cancer cells were extracted. These drugs were proposed for down/upregulation of HS

and CS for wet-lab validations.
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Results

PAPER I

By employing CSDI (Consecutive Slices Data Integration) in spatial transcriptomics
(ST) profiles of successive tissue sections in the human brain, the spot clustering and label
transferring from the single-nucleus RNA sequencing (SnRNA-seq) dataset can be
enhanced. This improvement proposed by us allows more precise and biologically significant

outcomes.

Stuart et al. 2019 “® developed the CSDI to correct the transcriptomic profiles of
consecutive slices using anchors representing spots with similar gene expression profile from
two consecutive slices. This is used to pair spots from the two slices. At the same time, the
transcriptomic differences between pairs of spots in anchors are used to correct datasets from
both consecutive sections. We conducted spatial gene expression analysis in human
postmortem, fresh frozen tissue sections. Two anatomical regions, the Orbitofrontal Neocortex
(ON) and the Temporal Neocortex (TN) from two adult male donors were investigated. From
each region of both subjects, one pair of consecutive slices (eight slices in total) were prepared
(Figure 1 in PAPER I). We performed our data analysis in two parallel approaches. First, by
considering each tissue section of consecutive slices as an independent object (Figure 2 in
PAPER 1) and second, by taking into account that consecutive slices may have complementary
information and needs to be integrated before downstream analysis (Figure 4 in PAPER 1). We
performed the integration using CSDI method. Hence, we could compare the results obtained
from these two approaches with each other and with histological and morphological

information of human cerebral cortex as reference.

We performed spot clustering to classify the spots with similar expression profiles, and
distinguish distinct cellular layers. In both above-mentioned approaches (first: before and
second: after CSDI), we could illustrate the grey matter (GM) and white matter (WM) which
was consistent with histological images, however the pattern of cluster between consecutive
slices was inconsistent in the first method. Given the expected architectural similarity between
two successive slices of the cerebral cortex, the question was raised that where the inconsistency

between the pattern of clusters originates from.

To compare these two approaches further, and to better understand the identified brain
layers, we integrated the measured expression profiles of ST from both approaches (before and

after CSDI) with a previously described snRNA-seq dataset ' . As single nucleus profiles
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contain greater number of genes than in our ST profiles, the integration of these two datasets
(ST and snRNA-seq) allowed us to perform the spot annotation more precisely. Using
predefined cell-type annotations in sSnRNA-seq—including oligodendrocytes, astrocytes, and
neurons—the ST spots were labeled. Before CSDI, we could not confidently annotate neurons
in GM, which is incompatible with histological image (Figure 2 in PAPER 1), while after CSDI,
neurons were located in the GM in all eight tissue sections (Figure 4 in PAPER 1). Besides,
more neuronal layers in GM could be unveiled using the second approach which is consistent

with morphology of human cerebral cortex.

Cell bodies of neurons are mainly found in the GM. However, in the first approach,
during our label transferring, the spots marked as neurons received weak probability values in
the GM. Besides, the pattern of spot clusters in this region (GM) were mainly inconsistent
between consecutive slices. This is an important concern, which led us to hypothesize that using
information from a single section of tissue may lead to inaccurate interpretation of clusters and
cell-types. The differences between annotations obtained for the spots before and after CSDI
can be attributed to the fact that the size of neuronal nuclei is larger than the thicknesses of the
tissue sections used in the ST protocol. Accordingly, a single slice will capture incomplete
transcriptomic neuronal context. CSDI provides a robust means of rectification of this
misinterpretation. Hence, the corrected signals of all types of nuclei can be obtained.
Consequently, the label transferring from snRNA-seq to ST is made consistent with the
histological findings only after CSDI. Ultimately, one can study the spatial distribution of

different cell-types more precisely.

PAPER II

Using bulk transcriptomics data from primary sorted cells in myeloid leukemia, we
measured the average gene expression across regulatory T cells (Tregs). We observed that
leukemic extracellular vesicles (EVs) expand pro-leukemic FOXP3+ Tregs which result in
evading immune system surveillance, inducing immunosuppression, inferior response to

chemotherapy, leukemia relapse and shorter survival.

In tumors, immunosuppressive milieu can induce expression of Treg-specific
transcription factor Foxp3 in non-regulatory, CD4"CD25 conventional T cells and turn them
into CD25"-Foxp3* induced regulatory T cells 8, Therefore, we studied the impact of leukemic
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EVs on Foxp3 induction. We performed ex vivo cultures of purified (sorted) human
CD4*CD25"CD127" Tregs together with EVs released by CML-K562 cells (CML EVs).

Analysis of Tregs by RNA sequencing revealed significant remodeling of the
transcriptome and elevated expression of 356 genes due to treatment with CML EVs, as well
as influence on biological processes, such as RNA metabolism. We analyzed genes described
as characteristic for Tregs in cancer “**° and observed a visible trend of upregulated expression
for CCR4, TFRC, TNFRSF1B (encoding TNFR2), ENTPD1 (CD39), TNFRSF8 (CD30), IL1R1,
HAVCR2 (TIM-3), and TGFB1 (Figure 4 and supplementary Figure 11 in PAPER II). However,
in most cases, the difference was not statistically significant, therefore we additionally verified
these observations on protein level. Analysis of transcription factor—binding motifs (TFBMSs)
of differentially expressed genes identified several transcription factors potentially engaged in
modulation of Tregs by leukemic EVs, such as EGR1, EGR3, ZBTB7A (LRF), E2F4, or TFDPL1.
Overall, RNA sequencing further signified that leukemic EVs affect Treg, by global remodeling
of gene expression, including upregulation of genes responsible for immunosuppressive
function. Analysis of transcription factor—binding motifs pinpointed a set of transcription
factors that modulate these changes in Tregs and maybe relevant for immunosuppression in

myeloid leukemias.

PAPER Il

We developed a drug repositioning pipeline to analyze array-based transcriptomics
data generated for hundreds of cancer/normal cell lines treated with thousands of drugs in
the LINCS L1000 project. We used this method to propose the drugs which can promote the

broad utilization of anticancer peptides (ACPS).

The LINCS L1000 project as a new gene expression profiling method has provided an
excellent opportunity to study the mechanism of action of small molecules, functionally
annotate genetic variants of disease genes, and inform clinical trials by collecting gene
expression profiles for thousands of drugs at a variety of time points, doses, and cell lines #2.
Taking the massive amount of data produced by LINCS L1000 into account, parsing the data
would be computationally intensive. To address this issue, various methods have been
developed “>°! In this study, we developed a new method to extract the desired information of
the effect of drug treatments in gene level (Figure 1 in PAPER Ill). In order to validate our

method, we tackled an existing issue in the field of ACPs. The efficacy of the positively-charged
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ACPs, as an alternative/complementary strategy to conventional chemotherapy, is inhibited by
elevated levels of negatively-charged cell-surface components, such as negatively-charged HS
and CS, which trap the peptides and prevent their contact with the cell membrane and
consequent pore formation and cell lysis °. Using our method, we proposed the FDA approved
drugs which can promote the broad utilization of anticancer peptides by decreasing the level of
HS and CS.

To do so, we determined LFC values for drug compared to control for each gene in each
cancer cell line. LFC describes how much expression values change between these two
conditions. To find the best statistical method which discovers the most meaningful co-
expression correlations in our datasets, the top 100 and 500 pairs of co-expressed genes from
A549 LFC matrix were determined by SP, PE, and KE methods and were subjected to GO and
KEGG pathway analysis (Table 2 in PAPER Il1). PE outperformed SP and KE based on the
number of significantly enriched terms (adjusted p-value < 0.05). Concerning the top 100 co-
expressed gene pairs, both KEGG and GO pathway analysis depict better KE performance
compared with PE and SP. However, looking at the top 500 co-expressed gene pairs, PE depicts
considerably more enriched terms and generally more involved genes in enriched terms in both
KEGG and GO pathway analysis. Hence, we chose PE as the reference statistical method to
compute gene-gene correlations for the remaining cancer cell lines (i.e., HEPG2, HT29, and
MCF7).

Considering those gene-gene correlations that appeared in all four cell lines and
involving genes already known in the literature to be associated with HS and CS %2, top 10
correlations with each HS and CS lab-validated genes were chosen. Assuming that the in silico-
driven gene-gene associations are common between all four cancer cell lines, biological

correlations between these genes could be expected.

To investigate the pathways related to selected genes, we conducted KEGG and GO
analysis (Figure 3 in PAPER I11). GO analysis identified Golgi lumen, which is significant as
this is where EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus
and catalyses the synthesis of HS 3. In addition to this, collagen-containing extracellular matrix,
where HS and CS are available ** was the highest enriched term. On the other hand, KEGG
pathway analysis revealed glycosaminoglycan biosynthesis of HS and CS as the top two

enriched terms.
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The expression profile of selected HS and CS co-expressed genes were extracted from
LFCs of all four cancer cells. The heatmap was used to identify the drugs that cause down-
regulation of these genes in all four cancer cell lines. Thus, a list of potential drugs which can
decrease the level of HS and CS at the surface of cancer cell lines was proposed for further wet-
lab validations (Table 4 in PAPER I11).
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Conclusion

Cell-type resolution transcriptomic methods, such as single-cell RNA sequencing, spatial
transcriptomics, bulk transcriptomics from primary sorted cells, and microarray profiles from
immortalized cell lines, are powerful tools for studying gene expression patterns of cell-types
and their functional implications. These techniques have provided valuable insights into cellular
heterogeneity, spatial organization, and the molecular mechanisms underlying various
biological processes and diseases. It is important to acknowledge that each method presents its

own set of advantages and challenges that need to be considered in their application.

In the analysis of human brain tissue, we identified a source of batch effect which was
incomplete ST profiles of cells, i.e., neurons, larger than thickness of tissue sections. We
suggested a method, named CSDI, to rectify the incomplete profiles and consequently improve
spot clustering and label transferring. In the bulk transcriptomics study of primary sorted
myeloid leukemia cells, we explored the impact of leukemic extracellular vesicles on regulatory
T cells and gained insights into immunosuppression mechanisms. Furthermore, we developed
a drug repositioning pipeline using microarray-based LINCS L1000 data to identify potential
drugs that could enhance the utilization of anticancer peptides. These findings highlight the
importance of employing advanced computational tools, statistical methods, and domain
expertise to fully leverage the capabilities of transcriptomics in unraveling the complexity of

gene expression and its implications in biological systems.
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Abstract

Background Visium Spatial Gene Expression (ST) is @ method combining histological spatial information with
transcristomics profiles directly from tissue sections. The use of spatial information has made it possible to discover
new modes of gene expression regulatiens, However, in the ST experiment, the nucleus size of cells may exceed the
thickness of a tissue slice. This may, in turn, negatively affect comprehensive capturing the transcriptomics profile in a
single slice, especially for tissues having large differences in the size of nuclei.

Methods Here, we defined the effect of Consecutive Slices Data Integration (CSDI) on unveiling accurate spot clus-
tering and deconvolution of spatial transcriptomic spots in human postmertem brains. By considering the histological
information as reference, we assessed the improvement of unsupervised clustering and single nuclei RNA-seq and ST
data integration before and after CSDI.

Results Apart from the escalated number of defined clusters representing neuronal layers, the pattern of clusters in
consecutive sections was concordant only after CSDI. Besides, the assigned cell labels to spots matches the histologi-
cal pattern of tissue sections after CSDI.

Conclusion CSDI can be applied 1o investicate consecutive sections studied with ST in the human cerebral cor-

tex, avoiding misinterpretation of spot clustering and annotation, increasing accuracy of cell recognition as well as
improvement in uncovering the layers of grey matter in the human brain.
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Background

‘The spatial transcriptomics concept has been introduced
as a combination of massively parallel sequencing and
microscopic imaging [1]. This method is an attractive
approach in studies of normal development and in clini-
cal translational research. Visium Spatial Gene Expres-
sion (ST) is one of the technologies developed around
this concept. ST is a next-generation molecular profil-
ing method dedicated to unraveling the transcriptomic
architeclure of the tissue. The application of ST for map-
ping the transcriptome with the morphological context
has been proven successful in many fields [2].

Although ST is a powerful new technique for captur-
ing palterns of spatial distribution of gene expression, it
also has a drawback of its design. A Visium Gene Expres-
sion slide consists of two or four tissue-capture areas
(6.5 mm x 6.5 mm), divided into 4992 spots, each 55 um
in diameler. Every spot contains oligonucleotide probes
with unique sequence barcodes that encode spatial infor-
mation in gene expression data (Asp et al,, 2020). Due to
their size, spots may encompass the expression profiles
of several cells. Consequently, this diminishes the accu-
racy of distinguishing neighboring cell types. This can be
addressed by several methods [3, 4], including integra-
tion with other single-cell analyses [5]. The most popu-
lar methods for the integration rely on so called anchors,
which represent similar gene expression patterns.

The importance of the anchor-based data integration in
distinct single-cell modalities (i.e., spatial transcriptomics
and single nucleus RNA sequencing data [snRNA-seq])
has been investigated previously [5]. However, the appli-
cation of Consecutive Slices Dala Integration {CSDI) in
ST analysis using the anchor-based approach remains
unexplored. We investigated the effects of CSDI on spot
clustering and cell-type annotation using both snRNA-
seq and ST technologies in human cerebral cortex sam-
ples. By applying the CSDI to ST, we aimed to evaluate
whether a single slice of tissue would be sufficient for ST
analysis or whether consecutive slices would be required,
We found that without CSDI, the pattern of obtained
spot clusters between consecutive slices is inconsistent,
and the cell-type annotation does not match the micro-
scopic characterisation of the slice. These issues were
resolved by employing CSDI, and layer-structure of grey
matter of the human brain was unveiled.

Methods

Data acquisition

We utilized the modified 10 x Genomics Visium Spa-
tial Gene Expression method to analyze the pro-
files of consecutive sections from fresh-frozen brain
Lissues. Accordingly, we used the orbitofrontal (ON) and
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temporal neocortex (TN) samples from two subjects. Tis-
sue specimens were provided by Harvard University and
Massachusctts Alzheimer’s Discase Rescarch Center and
all experimental procedures were conducted in accord-
ance with Independent Bioethics Committee for Scien-
tific Research at Medical University of Gdansk (consent
No. NKBBN/564-108/2022). The brain-tissue slices were
placed onto a Visium Gene Expression slide (10x Genom-
ics) and fixed according to the 10x Genomics protocol
(doc. CGO00239 Rev. C). Next, the slides were divided
into two via a piece of silicone gasket. Subsequently, we
stained the tissue by two methods—hematoxylin and
cosin, and hematoxylin and Congo red—to detect even-
tual amyloid deposits, We imaged the slides at 20x mag-
nification using brightfield settings (Olympus cellSens
Dimension software). Afterward, the tissue was per-
meabilized, using conditions according to manufacturer
protocol. The mRNA was released and bound to spa-
tially barcoded capture probes on the slide, Next, cDNA
was synthesized from captured mRNA, and sequencing
libraries were prepared. Samples were loaded and pooled
according to the protocol (doc. CG000239 Rev. C) and
sequenced in the standard Illumina pair-end constructs,
using [llumina’s NextSeq 550 System.

Visium data processing

Four pairs (consecutive slices) of ST raw data (BCL files)
from two postmortem brain samples were converted to
fastq files using 10x Genomics software Space Ranger
version 1.2,1 and its spaceranger mkfastq function. Sub-
sequently, reads were aligned to the human genome-
reference sequence (GRCH38) using the STAR method,
and spatial feature counts were generated using the spac-
eranger count function. Because an inverted microscope
was used for imaging, all images were flipped horizon-
tally prior to being applied to the Space Ranger.

Data preprocessing and normalization

All outputs from spaceranger count were read as Seurat
objects using Loadl0X_Spatial function of Seurat ver-
sion 4.0.3. Prior to data normalization, the percentages
of mitochondrial genes were calculated by the Percent-
ageFeatureSel function. Then, the spots with a number
of spatial features of more than 7000 and less than 200
were removed; spots that encompassed more than 15% of
mitochondrial genes also were omitted from the down-
stream analyses. Standard normalization was performed
using the NormalizeData function and the LogNormalize
method using default parameters, Variable features for
each object were determined using the FindVariableFea-
tures function and VST method. Next, the data were
scaled and regressed out for the percentage of mitochon-
drial genes using the ScaleData function,
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Dimensionality reduction and clustering

Dimensionality reduction was completed using the
RunPCA function. Prior to clustering, nearest neigh-
bors were determined by the FindNeighbors function
with default parameters. After this, the FindClusters
function determined the clusters by a shared nearest-
neighbor (SNN) modularity optimization-based clus-
tering algorithm (The resolution was arbitrarily set to
0.3).

Consecutive slices data integration

Dimensionalily reduction [or conseculive slices was
completed jointly through diagonalized canonical cor-
relation analysis (CCA). Using the FindlntegrationAn-
chors function, mutual nearest neighbors (MNNs) were
found in this shared low-dimensional space and were
termed anchors (for more details, see Stuart et al. [5]).
‘The IntegrateData function was considered for CSDI
using precomputed anchor sets. The integrated con-
secutive slices were saved as transcriptomics-corrected
objects. The same workflow for dimensionality reduction
and clustering was applied to integrated objects. Finally,
the eight Seurat objects (four pairs of consecutive slices)
before and after CSDI (16 in total) were saved as RDS
files to be compared from different perspectives.

Label transferring from snRNA-seq to ST

The previously annotated snRNA-seq datasel was
obtained from scREAD, a publicly available snRNA-seq
database [6] (https://bmbls.bmi.osumc.edu/scread/). The
causes of death for the two donors were Alzheimer's dis-
ease (Subject A) and stroke (Subject B). Hence, snRNA-
seq profiles with AD01104 and AD01102 scREAD data
1Ds for Alzheimer’s and non-Alzheimer’s disease were
retrieved [7]. The raw-sequencing data and the digital-
expression matrices obtained using the 10xGenomics
software Cell Ranger are available in the NCBI's Gene
Expression Omnibus (GSE129308) and are accessible
through the GEO Series accession number GSM3704357-
GSM3704375 (Otero-Garcia et al., 2020).

Data normalization and dimensionality reduction with
the same parameters as the ST data were conducted for
the two snRNA-seq datasets. By considering snRNA-seq
as our reference and ST data as query datasets, anchors
were found, and precomputed cell labels were Lrans-
ferred using the FindTransferAnchors (identifying shared
cell/spot states present across different datasets) and
TransferData functions, respectively. Label transferring
and clustering were completed twice for each of the ST
objects—once before and once after CSDI—to investigate
the effect of CSDI on label transferring and clustering,.
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Results

We conducted spatial gene expression analysis in human
postmortem, fresh frozen tissue sections. ‘I'wo anatomi-
cal regions, the Orbitofrontal Neocortex (ON) and the
Temporal Neocortex (TN} from two adult male donors
were investigated (Fig. 1). From each region of both
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subjects, one pair of consecutive slices (eight slices in  Identifying distinct cell types and their annotation using
total) were prepared. We cut the ON and TN tissue into  single tissue section

10-12 pm thick sections. Fach sample was sequenced to  Figure 2A shows the distinetion between the grey matter
a median depth of 187 million reads, corresponding to a  (GM) and the white matter (WM). The border between
mean of 3300 unique molecular identifiers (UMIs) and a GM and WM was established histologically based on
mean of 2058 genes per spot. cellular composition and arrangement (Fig. 2A, Z1, Z2,

Astrocytes

Oligodsndrocytes

in silico
clustering

tov I Hon :

Fig. 2 Resulis from spatal transeriptomics analyss Leing single Ussue sactions, A oo, histolegicsl image of oritofrentel neocortax (ON)
with marked white mattar (AN and grey mattar (G 71, zoomead-in Image of the border barween Wi and GM; 72, Blue arrow points 1o an
cligodendrocyte nucleus; Z3, Black and Green arows represent nuclei of neurons and astocytes, respectively, In Z2 and Z3, whte scale bars
repeesent 10 um, Bottom, unsuoervised classificzion of spots, B The ST spats clustering before C501 € Label uansferring before CS01 The neme of
the sample encodes number of the sectier (21/22), number of slice (ONT/0N2), and natient id (A/8)
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and Z3). We used an unsupervised method to investi-
gate whether categorizing the ST spots based on their
transcriptomics profile could represent structural layers
of the brain. Subsequently, we compared Lhe obtlained
groups with histological images of tissue slices to assess
the obtained clusterization and classification (Fig. 2A).
Thus, we confirmed the general consistency of GM and
WM patterns revealed by histologic and transcriptomic
methods.

We performed spot clustering using the steps recom-
mended by Satija et al. [7] in order to cluster the spots
with similar expression profiles, and distinguish distinct
cellular layers. The resulting clusters revealed the scpara-
tion of subcortical WM and cortical GM. More detailed
morphological layers of the brain were also unveiled
through the more detailed clustering (Fig. 2B). Consid-
cring the expected similarity of architecture between
two consecutive slices of the cerebral cortex, we should
observe the very similar pattern of clusters. However,
this consistency was vague, and the layered structure of
GM in PI_ON2_A could not be observed (Fig. 2B). We
observed that although, the use of a single section of
brain tissue with the ST method can be informative, it
may also have critical limitations in spot clustering. To
overcome this, we decided to use external gene expres-
sion data set and anchor-based integration method.

To better understand the identified brain layers, we
integrated the measured expression profiles with a previ-
ously described snRNA-seq dataset [&]. As single nucleus
profiles contain greater number of genes than in our ST
profiles, the integration of these two data sets allowed
us to perform the spot annotation more precisely. Using
predefined cell-type annotations in snRNA-seq—includ-
ing oligodendrocytes, astrocytes, and neurons—the ST
spots were labeled (see “Methods” for details). The pat-
tern of transferred labels is shown in P1_ONI_A and
P1_ON2_A as an example (Fig. 2C). The locations of oli-
godendrocytes and astrocytes were primarily identified
in WM and GM, respectively, in line with brain structure
(Fig. 2A). However, we could not confidently annotate
neurons in GM, which is incompatible with histology
(Fig. 2A). In summary, a single slice of brain tissue using
the ST method is informative but has limitations in dis-
tinguishing cell types using label translerring as well as in
spot clustering.

The effects of CSDI on identifying distinct cell types

and their annotations

Stuart et al. [5] developed the CSDI to correct the tran-
scriptomic profiles of consecutive slices using anchors
representing spots with similar gene expression profile
from two consecutive slices. This is used to pair spots
from the two slices, At the same time, the transcriptomic
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differences between pairs of spots in anchors are used to
correct datasets from both consecutive sections.

We decided to apply the CSDI method due to the heter-
ogeneily of the brain in terms of size of nuclei among dif-
ferent cell types (Fig. 3). On average, the size of a nucleus
from a neuron in GM (about 20 pm) is much larger than
the thickness of tissue section (10-12 pm). Consequently,
a single tissue section will encompass only part of nuclei
for essentially all neurons present in the studied sample.
‘This restriction will also apply to other smaller nuclei,
although to a lesser extent. Thus, for all cells present in a
studied brain tissue, it will cause partial loss of transcrip-
tomic signals. Taking “P1_ON1_A" and “P1_ON2_A" as
consecutive slices of ON as an example, we could iden-
tify all the morphological layers of the brain [9] only after
CSDI (Fig. 4A and Additional file 1: Fig. §1). In conclu-
sion, CSDI can resolve the issue of inconsistency of the
pattern of clustering between consecutive slices. Moreo-
ver, by applying the same parameters (see “Methods" for
details), we can identify more neuronal layers in GM [10)]
(Fig. 4A and Additional file 1: Fig. S1).

Cell bodies of neurons are mainly found in the GM
(Fig. 2A). However, during our label transferring, the
spots marked as neurons received weak probability val-
ues in the GM (Fig. 2C). This is an important concern,
which led us to hypothesize that using information from
a single section of tissue may lead to inaccurate interpre-
tation of clusters and cell types, Our approach to trans-
ferring cell labels from snRNA-seq to ST before and after
CSDI revealed different results, which provides support
for the above hypothesis. These differences are much
more pronounced in GM, where the spots recognized
as neurons, or astrocytes are the dominating cell types
(Fig. 4B). Accordingly, we compared the annotations with
consideration far the size of nuclei and the structural

Nucleus size differences
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| E= Neurons
T g = Astrocytes
= = Olgodendrocites
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oL cluslering and arnolalion using
C501 method. A Clustering afer CSDIurveled the GM layers and
resolved the inconsistency nDetwesn the pattern of clusters in
consecutive slices. B snRNA-sec Label transferring after CSCIL The
annolation probability s shown es a scherne for three different cel
types. € The classification of spots through label transfering is shown
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after C5DI

layers of the brain (WM and GM). Prior to CSDI, the
annotation of neurons and astrocytes received low and
high probabilities, respectively, in the area of the GM,
while the nuclei of oligodendrocytes were mostly visible
in the WM (Fig. 2C and Additional file 2: Fig. S2). Inter-
estingly, after CSDI, the likelihood of the annotation of
neurons was increased due to the gain of neuronal tran-
scriptomic profiles (Fig. 4B}, which is consistent with
the histological imaging (Fig. 2A). It is noteworthy that

Page 6ol 10

we did not observe any changes in the probability of
annotation for oligodendrocytes in the WM before and
after CSDI, which is also in agreement with histological
structure of the cerebral cortex. Among the transferred
labels from snRNA-seq to ST, neurons and astrocytes are
mainly available in GM. Consequently, no signal fluctua-
tion will occur before and after CSDI in WM. In both sit-
uations, the WM would preferentially be annotated with
oligodendrocytes (Figs, 2C, 4B, and Additional file 2: Fig.
52).

The differences between annotations obtained for the
spots before and alfter CSDI can be attributed to the
fact that the size of neuronal nuclei is much bigger than
astrocytic nuclei [11] (Fig. 3). 'Lheir size is actually larger
than the thicknesses of the tissue sections used in the ST
protocol. Accordingly, a single slice will capture incom-
plete transcriptomic neuronal context. CSDI provides a
robust means of rectification of this misinterpretation.
Hence, the corrected signals of all types of nuclei can
be obtained. Consequently, the label transferring from
snRNA-seq to ST is made consistent with the histological
findings (Fig. 2A). Ultimately, one can study the spatial
distribution of different cell types more precisely.

We evaluated the results from two independent spot-
categorization methods used in this study: label transfer-
ring and spot clustering. Hence, we classified the spots
using the transferred labels (Fig. 4C and Additional
file 3; Fig, S3) and compared them with the spot clus-
tering results represented in Fig. 4A. We observed that
the green cluster in Fig. 4C represents the three distin-
guished ncuronal layers in Fig. 4A (blue, red, and green
clusters). We were not capable of labeling the neuronal
layers in Fig. 4C as the utilized reference snRNAseq data-
set did not distinguish neuronal subtypes. Similarly, the
blue cluster in Fig. 4C represents oligodendrocytes in
Fig. 1A (purple cluster). Through determining the loca-
tions of neurons and oligodendrocytes in both methods,
we demonstrated that the results from both spot-cate-
gorization methods are consistent with the histological
images (Fig. 2A).

We assessed the improvement of annotation for neu-
rons before and after CSDL A considerable rise in the
number of defined neurons was observed after data
integration (Fig. 5A and Additional file 4: Fig. S4). To
investigate the accuracy of changes in spot labeling, we
computed the differentially expressed genes (DEGs) in
neurons versus oligodendrocytes and astrocytes before
(if available) and alter CSDL In some of the tissue sec-
tions, no neurons could be identified before CSDI (Fig. 5
and Additional file 4: Fig. $4). Next, we applied the DEGs
to Gene Ontology (GO) analysis (Fig. 5B and Additional
file 4: Fig. S4). According to the enriched terms in GO
analysis, neurons were identified accurately after data
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integration. We showed that by applying CSDI, misla-
beled neuronal spots will be rectified. Thus, more accu-
rate biologically meaningful results can be achieved.

Discussion

We studied the impact of the CSDI method on spa-
tial gene expression analysis and evaluated the effect of
CSDI on the improvement of clustering and label trans-
fereing [5]. The application of CSDI was motivated by
the two issues we observed in the results of the basic
spatial transcriptomic analysis. Firstly, in the GM, we
observed inconsistencies between the patterns of clus-
ters in consecutive slices (Fig. 4A). Secondly, we failed to
recreate Lthe expected layered structure of GM (Fig. 2A).
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According to the study conducted by Maynard ct al.
[10], data correction in consecutive slices was performed
using the data-refinement step of Space Ranger. Hence,
the spatial topography of gene expression in the human
dorsolateral prefrontal cortex was defined. The pattern of
determining clusters was consistent in all pairs of consec-
utive slices, a phenomenon we observed only after apply-
ing the CSDI. Moreover, using CSDI, we distinguished
cortical and subcortical WM layers. Thus, we showed
that the expecled consistency of the pattern of clustering
between consecutive slices can be achieved with CSDI
similar to Space Ranger. We investigated the results of the
clustering and label transferring, with and without CSDI
utilization. Simultaneously, we compared the consistency
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of the results obtained with the topographic organization
of the cerebral cortex. We observed the improvement of
clustering and the label transferring after applying CSDI,
‘The superior performance of using CSDI is likely related
to the size of nuclei in different cell types as the deter-
mining parameter. The sizes of the nuclei of certain neu-
rons are much larger than the nuclei of astrocytes and
oligodendrocytes (e.g., neurons from the pyramidal layer
(Figs. 2A and 3) of the cerebral cortex) [11]. In the human
brain, the size of neuronal nuclei may exceed the tissue
thickness recommended in the cryosectioning step of the
ST protocol (10 pm) [12]. This may jeopardize capturing
the whole transcriptomics profile using a single slice.

High resolution spatial methods [13] and/or experi-
ments involving tissue sections or entire organ cross-sec-
tions from small animals are virtually free from the risk
of losing the transcriptomics content of cells, Akeret et al.
[14], studied single lissue sections of mice brains using
10 x Visium spatial transcriptomics without any problem
in spot labeling. The reason could be due to the fact that
in mice, the average diameter of neuronal soma derived
from the cortical pyramidal layer does not exceed 10 um
[15]. Hence, our approach is specifically applicable to tis-
sues composed of cells with nuclei sizes exceeding the
minimum thickness of the section required for the 10x
Genomics Visium spatial Lranscriptomics experiment.

We used a combination of ST and snRNA-seq technol-
ogies to unveil the cerebral-cortex structure and related
cell types. The ST preserves the spatial location of gene
expression. However, its resolution at the level of the
spot, as well as in terms of the number of captured genes,
is nominally lower than the single-nuclei/single-cell tran-
scriptomics [16]. The lower resolution results from the
size of spots in ST expression slides (55 uym in diameter).
Accordingly, cach spot may encompass the transcrip-
tomic profiles of multiple cells. The ST data integration
with snRNA-seq/scRNA-seq is considered a deconvolu-
tion method to unravel the underlying cell types in each
ST spot. In this context, using snRNA-seq has advantages
over scRNA-seq. 'This is because the process of tissue
cryopreservation ruptures the cell membranes; however,
nuclear membranes remain intact during the freeze—
thaw cycle [17]. Furthermore, it has been shown that
the RNA-seq of single nuclei is highly representative of
transcriptional profiles from the entire cells. This fact is
specifically relevant to postmortem brain samples after
long-term storage at—80 “C [17]. Hence, we utilized the
prelabeled snRNA-seq to deconvolute the ST spots.

To confirm the deconvolution of ST spots and defined
cell types, we compared our annotation with neuro-
pathological findings. Astrocytes play a vital role in
delivering energy to neurons via the astrocyte-neuron
lactate shuttle [18]. Henee, astrocytic nuclei are spatially
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located beside perikarya (Fig. 2A), mostly placed in the
GM [19]. In Fig. 1B, the GM is annotated for both neu-
rons and astrocytes, corresponding to the previous find-
ings [18]. According to the shape of oligodendrocylic
nuclei—which are round with visible halos [20]—the
annotation of WM for oligodendrocytes corresponds
with the expected normal morphology of the brain cross-
section [21] (Fig. 2A). These concepts are consistent with
our histological (WM and GM) (Fig. 2A) and cell-type
(astrocytes, neurons, and oligodendrocytes) (Fig, 4C)
classifications.

An alternative solution to resolve the low resolution
of the ST method is to decrease the size of barcoded
spots in gene expression slide glasses. However, as we
addressed in our study, ST results would be affected by
the size of neuronal nuclei because the origin of the prob-
lem is not the sizes of spots but the thickness of the tis-
sue slices. Accordingly, by decreasing the sizes of capture
spots, deconvolution methods may no longer be required
anymore; however, the need for CSDI remains.

In summary, the transcriptomic profiles of ST con-
seculive slices may need Lo be corrected prior to further
analysis. Correcting the datasets simply for the depth of
sequencing using normalization methods {e.g., log nor-
malization) cannot remove all the unknown batch effects
ol consecutive slices. Data correction can be performed
during the data-processing step by Space Ranger using
the spaceranger aggr function or during the analysis steps
using CSDI. In Space Ranger, the transcriptomic profile
of consecutive slices will be aggregated, normalized to
the same sequencing depth. Then, the feature-barcode
matrices and the analysis of the combined data can be
recomputed. In CSD], the spots with similar transcrip-
tomics profiles in two datasets will be anchored. Using
the anchors, the transcriptomics profile of consecutive
slices will be corrected, and one can proceed with the
downstream analysis. Consequently, the results of clus-
tering and annotation will be improved after data correc-
tion, Therefore, more trustable biological findings can be
achieved. A general comparison between CSDI and Space
Ranger aggr is shown in Additional file 4: Fig. S4. The pat-
tern of clusters after applying CSDI is more consistent in
consecutive slices than Space Ranger {(Additional file 5:
Fig. S5, A), while in label transferring both methods per-
form equally (Additional file 5: Fig. S5, B). However, more
in depth analysis is required to show the outperformance
of ane over the other.

The study has potential limitations. First, while spatial
transcriptomic technology allowed us to define the spa-
tial location of cell types in human brain tissues, the reso-
lution was limited to 1-10 cells per spot [22]. This means
that spatial transcriptomic analysis should be taken with
caution and possibly benefit from the computational
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Conclusion
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4-1BBL—containing leukemic extracellular vesicles promote
immunosuppressive effector regulatory T cells

Julian Swatler,’ Laura Turos-Korgul," Marta Brewinska-Olchowik,! Sara De Biasi,” Wioleta Dudka,”® Bac Viet Le,"* Agata Kominek,’
Salwador Cyranowski,*® Paulina Pilanc,® Elyas Mohammadi,” Dominik Cysewski® Ewa Kozlowska,” Wioleta Grabowska-Pyrzewicz,'®
Urszula Wojda,'? Grzegorz Basak,'' Jakub Mieczkowski,” Tomasz Skorski,* Andrea Cossarizza.?'? and Katarzyna Piwocka'

'Laboratory of Cytometry, Nencki Institute of Expenmenta Biology, Warsaw, Poland; *Departent of Medical and Surgical Sciences for Children & Adults, University of Modena

and Raggic Emilia, Madena, Italy; *Structural and Cemputational Biolagy Unit, Eurapaan Malacular Bialegy Laboratory, Haide!barg, Gammany; *Fals Cancar Inatituta for
Personalzed Medicing, Lewis Kalz Schuol of Medicing at Templs Univarsity, Phisdelphia, PA; Lat y of Molecular N biology, Nencki Ingtitute of Experimenta’ Biology,
Warsaw, Poiand; “Postgracuate Schoal of Molecuiar Medicine, Medical Unwversty of Warsaw, Warsaw, Poland; “SP-Medicine Laboratory, Medical University of Gdansk,

Gdansk, Poland; *Laboratory of Mass Spectrometry, Institute of Bioshemistry and Biophysics, Warsaw, Poland; *Department of Immunology, Faculty of Biology, University of
Warsaw, Warsaw, Polard; "“Laboratory of Preclinical Testing of Higher Standard, Nercki Institute of Exparimental Biology, Warsaw, Poland; ' 'Department of Hemalciogy,
Transplantation and Intarnal Medicine, Medical University of Warsaw, Warsaw. Poland; and '*National Institute for Cardiovascular Research, Bologna, ltaly

m Chronic and acute myeloid leukemia evade immune system surveillance and induce

immunosuppression by expanding proleukemic Foxp3™ regulatory T cells (Iregs). High levels

5 RabQ:a-de?:;nc:ent' of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse. and
s Al shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain
EVs promotes

z largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector
leukemia engraftment 3 - ) e e 3
and immunosuppres- proleukemic Tregs. Using mouse model of leukemia-like disease, we found that Rabh27a-
sive potential of Treg dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated
cells in vivo. with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated
mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes
in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs.
Leukemic EVs-driven Tregs were characterized by elevated expression of effectorjtumor Treg

» Leukemic EVs
containing 4-1BBL
protein promote

eTregs displaying markers CD39, CCR8, CD30, 'I}\'FRZ, C'CR4, TIGIT, and IL21R and: included 2 distinct effector Treg
specific signature (eTreg) subsets: CD30 CCR8"'TNFR2" eTregl and CD39* TIGIT" eTreg2. Finally, we showed that
(CD39, CCRS8, CD30, costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity
TNFR2, CCR4, TIGIT, and effector phenotype of Tregs by regulating expression of receptors such as CD30 and

and IL21R). TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in

stimulation of immunosuppressive Tregs and leukemia growth. We postulate that targeting of
Rab27a-dependent secretion of leukemic CVs may be a viable therapeutic approach in
myeloid neoplasms.

Introduction
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Myeloid neoplasms, including chronic and acute myeloid leukemia (CML/AML), are characterized by eva-
sion of antileukemic effector immune response and induction of immunosuppression. In CML and AML

d 20 2021; 15 January 2022; prepubished onine on The full-text varsion of this articls contans & daly supplement.
Blood Advances First Edtion 7 February 2022; fnal version published onlire 17 March £ 2022 by The American Scciety of Hematology. Licensad under Graative
2022. DOI10.1182/bloodadvances. 2021006195, Commons Attribution-NonCommetcia-NoDervatives 4.0 International (CC BY-NC-
Transcriptomies data were deposited under Gene Expression Omnibus number ND 4.0}, permittng only nancommercial, nanderivative Lse with attribution. All other
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patients at diagnosis, effector cells of the immune system (CDS8' T
cells, NK cells) are exhausted and dysfunctional.'™ Simultaneously,
suppressive immune subsets, including suppressive myeloid cells*
and Foxp3™ regulatory T cells (Tregs), dominate the microenviron-
mant.* Tregs are increased in peripheral blood®® and bone marrow
(BM) of leukemic patients.”® Importantly, high levels of Tregs in
blood and BM of AML palients predict inferior response to chemo-
therapy, disease relapse, and sharter survival.®'® Deplation of Trags
in a mouse model of MLL-AFS8 AML reduced leukemic burden and
increased sunival'' In CML, Tregs were shown to decreass in
palients responding to tyrosine kinase inhibitors, and low Treg levels
were associated with treatment-free remission, '

Although direct Treg targeting and subsequent elimination would
saem like a viable therapeutic strategy, precise depletion of Tregs is
difficult to achieve in patients, and it may lead to severe autoimmune
adverse events.'® Downregulation of proleukemic Tregs and
improved therapeutic outcome could be achieved by targeting fac-
tors that drive expansion and activity of Treg subsats in leukemias.
Even though some candidates, including ceinhibitory PD-1/PD-L1,
Galg/TiM-3 pathways, and 1DO enzyme, were implicated in Tregs
expansion,” """ Treg-driving mechanism have been poorly investi-
gated in myeloid neoplasms.

Extracellular vesicles (EVs) have recently emerged as important
mediators of intereellular  communication. EVs are particles
released by all ypes of cells and present in body fluids. They are
divided into small exosomes. medium microvesicles, and large
apoptatic bodies." EVs have been largely implicated in both
immune cell activation and immunasuppression.’® In solid tumors,
EVs inhibit antitumor activity of T cells'® and are responsible for
induction and expansion of Tnags.m'?1 In leukemias, including
myeloid neoplasms, leukemic EVs promate (in an autocrine man-
ner) growth and drug resistance of leuksmic calls,***? as well as
modify stromal and vascular components of the BM niche.?*2®
Until now, immunomodulatory properties toward T cells have only
been described for AML-derived EVs, which inhibit effector func-
tion of CD8™ cytataxic T lymphocytes.*”

Using mouse ex vivo madels, we previously observed involvement of
CML-derived leukemic EVs in regulation of suppressive actvily of
murine Tregs and Foxp3 expression.”® Here, we use ex vivo models
with human ymphocytes and EVs to show that leukemic EVs, con-
taining 4-1BBL/CD137L/TNFSFS protein, promote induction and
immunosuppressive pelarization of human Tregs by medulating
mTOR and STATS signaling. We identify specific subsets of efiec-
tor Tregs (eTreg), characterized by expression of novel tumor Treg
markers, such as CD30, CCR8, TNFR2, CD38, and TIGIT. Finally,
in vive in a mouse model of CML-like disease, Rab27a-dependent
leukemic: EVis promote leukemic engraftment, which was associated
with higher abundance of activated, immunosuppressive Tregs, Cur
results indicate that inhibition of leukemic EVe secretion, to attenu-
ate Tregs, may contribute to improved therapeutic outcome in mye-
loid |eukemias.

Methods

Cell lines

Human cell lines CML-K562 (ATCC, GCL-243) and AML-MOLM-
14 {DSMZ, ACCY777) were cullured in supplemented lscove's
modified Dulbecco's medium or RPFMI 1640 media, respectively.

1860 SWATLER et al

Murine 320 BCR-ABL1 GFP' cells were abtained from 32D
BCR-ABL1™ cells and cultured as previously described.”® To
obtain stable knock-out cell lines without expression of Rab27a
ot 4-1BBL, clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 8 (Cas8) technol-
ogy was used, using "al-in-1" plasmids encoding guide RNA,
Cas8, and red fluorescent protein (RFF) (Merck-Sigma-Aldrich).

Primary human samples from patients

Plasma (source of primary EVs) was obtained from whole blood of
10 leukemic (7 CML and 3 AML; before starting treatment and at
diagnos'm} patiants and 10 he:;]th.}r donars. Blood was processad
as descrbed in supplemental Methods. Material from patients was
collected with their informed written consent, under the approval of
the Bioethics Committee of the Medical University of Warsaw (KB/
107/2018) and Ethics and Bioethics Comimitlee of the Cardinal
Stanislaw Wyszynski University in Warsaw (KEiB-19/2017), and in
accordance waith the Declaration of Helsinki and Polish regulations.

Extracellular vesicles isolation and characterization

EVs released by leukemic cells ware isclatad from call cultura
madium, eonditioned for 24 hours by either K562 (CML EVs) or
MOLM-14 (AML EVs) cells iseeded in media with EVs-depleted
fetal bovine serum)., EV's were isclated by differential ultracentrifu-
gation as previously described.’” Pelleted EVe were resuspended
in either nonsupplemented AIM V medium (for funclional assay
with T cells) or phosphate-buffered saline {for EVs characteriza-
tion). EVs characterization and uptake analysis [supplemental Fig-
ure 1A-F) was pedormed as previously described'” (described in
datail in supplemental Mathods). For all axperimants (unless
specified in dose-dependent studies), T cells were treated with
either 3 % 10% CML EVs ar 5 = 10% AML EVs, equivalent of EVs
released by 1 % 10° cells. EVs fram plasma were isolated using
size-exclusion chromatography (gEV original 35 nm columns,
lzon) and fractions 7 to 9 (supplemental Figure 1G-H) wera
pooled and concentrated using Amicon Ultra-2 10kDa (Merck).
Isolation and charactenzation of EVs was performed according to
guidelines of the International Saciety for Extracellular Vesicles™
and the EV-TRACK consortium™® (EV-TRACK database entry
EV210187).

Primary T cell (Treg) isolation and culture

Human lymphocytes wers obtained from buffy coats of healthy
donors (differant doner each sxperiment) from the Regional Cen-
ter for Blood Donation and Blood Care in Warsaw, Poland (in
accordance with the Declaration of Helsinki and Polish regula-
lions). Peripheral blood mononuclear cells (PBMCs) were isolated
by density gradient centrfugation (Lympheoprep, STEMCELL).
T cells, including Tregs, were sorted using BD FACS Ana Il
(gating strategy: supplemental Figure 24). Sorted T cells
(CD47CD25"CD127" Treg, CD4*CD25 ™ canventional T cells!
Teonv) were cultured in AIM ¥ medium (Giboo), stimulated with
antibodies anti-CD3 (coated wells, 5 pg/mL; Biclegend) and anti-
CD2B (soluble, 1 pg/mL; Biolagend), and supplamented with
IL-2 {100 IU/mL for Teonw/Foxp3d induction, 50 IU/mL for Tregs;
Peprotech). Cultures wers maintained for 6 days to analyze
Foxpd induction in Teonv, § days to analyze Tregs, and 18 hours
to analyze phosphorylation of signaling molecules in T cells.
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Figure 1. Leukemic EVs promote
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In vivo mouse model of CML

To study CML in vivo in immunocompatent animals, murine 32D
BCR-ABL1*GFP* cells, either wild-type (wt) or Rab27a™"", were
injected into genetically-matched male C3H mice, 8 to 10 weeks
old {Figure 2A). All experimental procedures were performed
according to the guidelines of Poland’s National Ethics Committee
for Animal Experimentation and approved by the First Local Ethics
Commitlee for Animal Experimentation in Warsaw (835/2018,
1059/2020). In brief, 1 % 10° 32D BCR-ABL1"GFP™ cells were
injected intraperitoneally into noniradiated animals. Control, nonleu-
kemic mice were mock injected with NaCl. Following 2 months,
blood, BM, and spleens were isolated and used for subsequent
analyses, Development of leukemia-like disease was assessed by
analysis of engraftment of GFP™ cells by flow cytometry. Animals
that had GFP* cells engrafted into BM, blood, and spleen (supple-
mental Figure BA} were further analyzed.

High resolution spectral flow cytometry and
data analysis

For 23-color phenatyping of Tregs treated with leukemic EVs, cells
from ex vivo cultures were stained with surface antibody cocktail
{including viability dye, supplemental Table 1) in Brilliant Stain Buffer
Plus (BD) for 30 minutes. Cells were fixed and permeabilzed for
intracellular  staining by eBioscience Foxp3/Transcription Factor
Staining Buffer Set (Invitrogen). Intracellular proteins were stained
for 30 minutes. Samples were acquired using CYTEK Aurora spec-
tral flow cytometer and analyzed in FlowJo (BD). For manual analy-
sis, cells were gated as shown in supplemental Figure 12A. For
computational analyses, each sample was downsampled to obtain
7500 Treg. For tSNE and FowSOM®' all samples were
concatenated and processed using specific plugins in FlowJo v10.
For FlowSOM, cells were clustered into 6 populations (49 nodes),
based on 15 parameters (Figure 5B). Generated clustering strate-
gies were then used to cluster and quantify detected pepulations in
individual samples and experimental conditions. Remaining flow
cytometry assays and antibody specifics are described in supple-
mental Methods and Tables.

Statistical analysis

Data were plotted and statistics were parformed using GraphPad
Prism v9. Statistical tests used are indicated in figure legends.
Unless indicated otherwise, statistics were performed in comparison
with control (CTRL). Significant differences (P < .05) are marked

on graphs with asterisks (*P < .05, ™P < 01, *P < 001,
P 0001).

Results

EVs released by myeloid leukemia cells induce
Foxp3 and upregulate suppressive phenotype and
activity of Tregs

In tumors, immunosuppressive milieu can either expand and
drive effector polarization of already differentiated Treg or induce
expression of Treg-specific transcription factor Foxp3 in nonregula-
tory, CD4*CD25~ conventional T cells and turn them into CD25"-
Foxp3 " induced regulatory T cells (iTregs) (CD4 CD25~ — Foxp3~
iTreg).*? Therefore, we studied the impact of leukemic EVs on Foxp3
induction, phenotypic changes, and suppressive activity of human
Tregs. We performed ex vivo cultures of purified (sorted) human
CD4"CD25"CD127° Tregs or CD4™CD25™ Teony, together with
EVs released by CML-K562 cells (CML EVs) or AML-MOLM-14
cells (AML EVs) (characterized in supplemental Figure 1A-C). Inter-
action of EVs with human T cells/Tregs was confimed by tracking
fluorescent  signal  of carboxyfluorescein  succinimidyl  ester
(CFSE)-labeled EVs in a culture with ymphocytes (supplemental
Figure 1D-F).

CML EVs induced expression of Foxp3 in CD4"CD25 ™ cells, simi-
larty to TGF-B, a widely recognized Foxp3 inducer (Figure 1A-B).
Foxp3 induction was also observed after treatment with AML EVs
and primary EVs from plasma of leukemic patients (as compared
with healthy donar EVs) {Figure 1B). Induced expression of Foxp3
distinguished a separate population of iTreg (Figure 1A).

Treatment of sorted CD47CD25"CD127" Tregs with CML EVs
lad to elovated expression of molecules responsible for suppressive
activity: CD38, CTLA-4, and Foxp3 (Figure 1C). Unsupenvised anal-
yses of flow cytometric data based on these markers and activation
molecule CD25 already indicated EVs-mediated polanzation of
Tregs into heterogenous cell states (Figure 1D: supplemental Figure
3B) and expansion of highly suppressive subsets, as revealed by
FlowSOM  clustering  (supplemental Figure 3C-D). Using
“nonconditioned medium” control we confirmed that effects
observed in our experiments were specific to CML EVs (supplemen-
fal Figure 4A-C). Consequently, a functional in vitro suppression
assay confirmed that Tregs treated with CML EVs more potently

A4 Lok

Figure 1 ( i EVa, aither ral d by CML-K562 calls (et panel, AML-MQLM-14 cells (middle panel. 5 % 10 particles), or primary patients’ plasma
EVs, compared with heatthy donors’ (HD) plasma EVe (right panel). For CML-K562, data are from 4 experments, n = 8 {axcept n = 4 for 3 X 10 CML EVs): for AML:
MOLM-14 frcm 4 experiments. n = 4. Mean = SD is prasentad, unpaired ¢ test with Welch's comection, compared with CTRL Fer plasma EVs, n = 10 CML/AML patients
(3 AML, 7 GML} and 10 healthy donors Pairing was done for samples that were used 1o lreat the same batch of primary CO4* CD26~ Toonv, Two-tailed paired ¢ test, For
panele A and B, cells were gated as in supplemental Figure 28. (C} Influence of leukemic EVs (KEB2-derived) on key proteins that drve suppressive activity of Tregs:
CD39, CTLA-4, ard transcription factor Faxp3. Non-Treg CD4 " Teonv {CD257) cells were used as negative contrals. Representative histograms are shavn (for CD39, 8 x
10 CML EVs; for CTLA-4 ard Foxp3, 1.5 % 107 CML EVs). Data are from 3 experments, n — 6 (n = 3 for 3 % 10° partcles). (D) Unsupervised ISNE clustering of Tregs,
Treg + CML EVs (KS582-derived, 1.5 % 10° particles), and Teorw, based on CD38, CTLA-4, CD25, arvi Fuxp3. In each group, 80 000 cells were clustered, 10000 from
each replicate (cblaned by downsampling). For panels C and D, cells wers gated as in supglemental Figure 3A. (E) In vilre supgresswve actwity of control and leukemic EV
(K562-derved)-reated Tregs, pronounced as expansion index (El} of responder celis (Trespl. Lower expansion index correspords to higher suppressive activity. Data are
fram 3 exporments, n = 6. {F} Represontatve proliferation profiles of CD4™ responder cels in an in vitro suppression assay with contro! and CML EV (K582-darived)-
treatad Tregs. For panels C and E mean = SDis presented, unpaired ¢ teet wih Welch's correction, compared with CTRL. *F < .05, *P < 01, "™*F < 001,

*444P < 0001. SD, standard deviation.
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inhibited proliferation of effector responder CD4' and CD8' T cells
(Tresp), confirming superior suppressive activity (Figure 1E-F).

Overall, we demonstrate that leukemic EVs directly induce differenti-
ation and promote suppressive phenotype and activity of human
Tregs.

Rab27a-dependent secretion of leukemic EVs
promotes Treg activity and leukemic
engraftment in vivo

Rab27a is a significant regulator of EVs biogenesis, and Rab27a
deficiency downregulates secretion of EVs, though it is not the only
protein engaged in EVs secretion.®® Due to its major function,
Rab27a deficiency is sufficient to downregulate EVs secretion and
has been used to study effect of continuous EVs secretion in in vivo
models of cancer. To evaluate physiological relevance of leukemic
EVs, stable Rab27a-deficient (Rab27a™"") 32D BCR-ABL1 GFP”
cells, which secrete 30% to 4096 less EVs (supplemental Figure
5C-D), were used in an in vivo model of CML-like disease (Figure
2A).

Diminished release of EVs by Rab27a / BCR-ABL1-expressing
cells led to reduced engraftment of leukemic cells into blood,
spleen, and BM (Figure 2B), whereas Rab27a deficiency did not
affect their clonogenic potential, proliferation, and cell cycle (supple-
mental Figure 5E). These results suggest that leukemic EVs modu-
lated disease development by affecting other cells in the
microenvironment, including Tregs.

We analyzed Tregs in mice, focusing on spleen and BM: tissues
where CML develops and which encompass full spectrum of cellu-
lar Treg interactions. Representative tSNE visualization of multipara-
meter flow cytomelry data has already confimed that in Rab27a ™'~
leukemia-like disease, Foxp3™ Tregs cluster differently (predomi-
nantly as calls expressing lower CD25, CD38, CD44), as compared
with wt leukemia and healthy animals (Figure 2C; supplemental Fig-
ure 6A). Delailed analysis of CD25"Foxp3 "' Tregs has revealed that
Rab27a-dependent secretion of EVs significantly promotes expan-
sion of CD44 CD62L activated Tregs in both BM and spleen,
conlrary to naive CD44 CD62L' Tregs (Figure 2D). Moreover,
Rab27a deficiency resulted in lower Treg numbers in spleen, as
well as diminishad exprassion on Tregs of suppressive CD39, IL-10
in spleen and CD73 in BM (Figure 2E-H). Differences between
spleen and BM in some phenotypic features of Treg in Rab27a '~
leukemia may be an outcome of different tissue context, as BM con-
sists primanly of myeloid cells, whereas T and B cells are most
abundant in the spleen. This may also be relevant in terms of
CD39/CD73 modulation, as these ectoenzymes may be expressed
by other calls in BM/spleen niche.™ Overall, significant changes in
the amount of activated CD44"CD62L~ Tregs in both tissues
show that leukemic EVs expand Tregs with immunosuppressive

potential in vivo, even though leukemic EVs did not entirely affect
Treg phenotype or Treg numbers in the BM.

In our model, Rab27a~’~ CML did not significantly influence other
immunosuppressive cells, such as Bregs or myeloid suppressive
cells (supplemental Figure 8A-D), which additionally exhibited low
abundance. compared with mouse models of solid tumors.**® This
implicated direct modulation of Tregs by Rab27a-dependent leuke-
mic EVs rather than indirectly via B cell-T-cell, or macrophage-T cell
interactions.

Altogether, in vivo data strongly support our hypothesis that secre-
tion of leukemic EVs and EVs-mediated upregulation of activated,
immunosuppressive Tregs facilitate  development of myeloid
leukemias.

Furthermore, phamacological targeting of EVs secretion by inhibi-
tion of Rab27a or nSMase2 has attenuated expansion of Tregs in
cultures of human PBMCs with myeloid leukemia cell lines K562
and MOLM-14 (supplemental Figure 8). This suggests that effects
similar to genetic targeting of Rab27a {described above) may also
be achieved by phammacological inhibition of EVs secretion.

Leukemic EVs drive Tregs by modulating mTOR
and STATS signaling and remodeling
of the transcriptome

Foxp3 and Tregs underge complex molecular regulation,
identify molecular drivers involved in modulation of Tregs by leuke-
mic EVs, we analyzed activation of signaling pathways crucial for
regulation of Foxp3 and Treg biclogy (by phospho-specific flow
cytometry}®® in both human Tregs and CD4'CD25 Tconv differ-
entiating into iTregs, as well as performed transcriptomic analysis of
human Tregs.

Leukemic (both CML and AML) EVs downregulated phosphorylation
of mTOR and its downstream effector protein S6, parallel to upregu-
lation of phosphorylated STATS, in both Tregs and CD4 CD25

Tconv upon Foxp3 induction by leukemic EVs (Figure 3A-D). Such
changes have been described as favorable for Treg differentiation,
stability, and suppressive function, as activated STATS binds the
Foxp3 promoter to drive its transcription, whereas mTOR pathway
inhibits Foxp3 expression.®* On the other hand, phosphorylation
of p38, p65/RelA, and SMAD2/3 were not changed (supplemental
Figura 10A-B). To validate whether signaling changes induced by
leukemic EVs promote genetic and functional stability of Tregs, we
analyzed demethylation of the Treg-specific demethylated region
(TSDR} in the Foxp3 gene and secretion of both non-Treg-specific
and immunoregulatory cytokines.*® TSDR was demethylated in both
CTRL and leukemic EVs-treated Tregs (Figure 3E). However, CML
EVs blocked secretion of IL-6, IL-17A, and IFN-y, preventing polari-
zation into unstable, Th1/Thi 7-like subsets (Figure 3F). even though
secretion of immunoregulatory IL-10 and TGF-f was unaffected

37,38 To

iaclin cizease. i

Flgure 2 ) lauk 1 by wt or Rab27a '

CML cells, The bottom nghl graph shows localization of Foxpd ' cels on the tSNE map. Data

fram 3 to 4 mice (par group) from single expedment were used as representative groups. In each group. 30 000 viable CD3™ T cells were clustered, 7600 to 10 000 from
each anmal {obtaned by dowrsampling in Flowlo}. (D) Distribution of activated {CD44 ' CO82L ) and naive (CD44 CDB2L') Treg subsets in BM and spleen of mica
bearing lsukemia-ike disease. Reprasentative density plots showing axpression of CD44 and CDB2L by Tregs in the BM are shown. Trag amount (E) and expression of
GD73 (Fl, CD39 (G), and IL-10 (H) on Tregs in 8M and splean of mice bearng eukemia-ike disease. In each graph, daa ere preserted as meen = SD. 1-way ANOVA

with Tukey's postiest, *P == 05, P = 01, ***P = 001, ****P = 0001. N ~ & to 8 anmals per group from 3 different experi

leukemic calls’ injections). Gating strategy for Treg phenatyping is shown i supf
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(supplemental Figure 10C). These results cleardy show that leukemic
EVs not only upregulate suppressive features of Tregs but also
maintain their stability. Both processes are likely modulated by
downregulated mTOR-56 and upregulated STATS signaling.

Analyeis of Tregs by RNA sequencing revealed significant remodel-
ing of the transcriptome and elevated expression of 356 genes due
to treatment with CML EVs (Figure 4A-B), as well as influence on
biclogical processes, such as RNA metabolism {supplemental Fig-
ure 11B-C). We analyzed geres described as characteristic for
Trege in cancer®™ and observed a visible trend of upregulated
expression for CCR4, TFRC, TNFRSFIB (encoding TWFRZ),
ENTPD?1 (CD3%), TNFRSFB (CD30), IL1RT, HAVCR2 (TIM-3),
and TGFBT (supplemental Figure 110). However, in most cases,
the difference was nat statistically significant, therefare we addition-
ally verified these observations on protein level (Figure 50,FL Analy-
sis of transcription factor-binding motifs (TFBMWst of differentially
expressed genes identified several transcription factors patentially
engaged in modulation of Tregs by leukemic EVs, such as EGR1,
EGR3, ZBTB7AILRF), E2F4, or TFOP1 (Figure 4C; supplemental
Figura 11E). Ovarall, RNA sequencing furthar signified that laukemic
EVs affect Treg, by global remodeling of gene expression, including
upregulation of genes responsible for immunosuppressive function.
Analysis of transcription factor-binding motifs pinpainted a set of
transcription factors that modulate these changes in Tregs and may
be relevant for immunoesuppression in myeloid leukemias.

Tregs driven by leukemic EVs are constituted by
heterogenous effector subsets and characterized by
upregulated CD39, CCRS8, CD30, TNFR2, CCR4, TIGIT,
and IL2Z1R

To evaluate changes in human Tregs on single cell protein level, we
developed & 23-color panel for spectral flow cylometry to analyze
rarkers of effectoritumeor Treg.?' ™ tSNE clustering revealed that
leukemic: EVs promoted expansion of heterogenous Treg subsets
{Figure 5A). Using FlowSOM we clustered Tregs into 6 populations
(Rgure 5B). As 2 of them (PopD and Pop3) extubited very similar
expression pattern of analyzed markers and established 1 joint clus-
ter on 1SME, we decided to merge them and analyze together as 1
papulation (Pop0+Pop3) (Fgure 5B, marked in pink). Two identi-
fied populations were upregulated (Pop2, Popd) and 1 was down-
regulated (Pop0 1 Pop3), by CML and AML EVs (Figure 5C.E).
Both upregulated populations exhibited high expression of functional
effector markers (Figure 5B; supplemental Figure 12B), thus we
named them effector Tregl (eTreg1/Pop2) and effector Treg?
(eTreg2/Popd). eTregl (Pop2) could be distinguished by high
expression of CD20, CCR8, TNFR2, whereas eTreg2 (Popd) by

high expression of CD38 and TIGIT (Figure 5B; supplemental Fig-
ure 12B). As newly described effeclor subsets exhibited a distinct
phenotype, it suggests specialized functions of eTregl and eTreg2
in the context of leukemic microenvirconment. The EVs-
downregulated population (Pop0+Pop3) had lower expression of
markers such ag CCR4, CD25, Foxp3, ICOS (supplemental Figure
12B), thus it constitutes a less-effector and probably less suppres-
sive population.

Classical, manual galing analysis of the entire Treg population
revealed that CML and AML EVs upregulated expression of several
effector tumor Treg markers, identifying a specific leukemic
EVa-driven Treg signature that includes elevated expression of
CD39, CCR8, CD30, Foxp3, TNFR2, CCR4, TIGI, and IL21R
markers (Figure 50,F, blue frame]. Although LAG-3 and CD73 were
highly upregulated, their expression was limited to <21% of Tregs.
Altogether, these data demonstrate that leukemic EVs mediate
development of specific subsets of eTreg cells and promote
EVa-dependent signature of Tregs (slevated expression of CD3g,
CCR8, CD30, Foxp3, TNFR2, CCR4, TIGIT, and IL21R).

Finally, we verfied whether primary EVs isolated from plasma of
CML/AML patients promote similar effector polarization of human
Tregs and the same specific marker signature of Tregs. The treat-
ment of Tregs with primary EVs from the plasma of leukemic
patients (compared with healthy donor EVs) led to slevated expres-
sion of the signature molecules CD39, CCR8, TNFR2, GCR4,
TIGIT, IL21R, and CD30 (Figure 5G). This provides evidence sup-
porting the hypothesis that leukemic EVs, present in the circulation
(plasma), can influence immune cells in distant tissues to facilitate
immunosuppression outside the B,

Callectively, leukemic EV's, both released in vitro by CML/AML cells
and of primary origin (plasma EVs), upregulate specific signature of
Tregs (charactenzed by high expression of CD38, CCR8, TNFR2,
CCR4, TIGIT, IL21R, and CD30) that includes 2 effector immuno-
suppressive: Treg subsets,

Leukemic EVs contain 4-1BBL protein, which
cantributes to Treg activity and effector phenotype

Finally, we aimed 1o identify specific prolein content of EVs that
influences human Tregs. Mass spectrometry, followed by functional
annotation of detected proteins, identified groups of proteins con-
nected to immune response, such as TMF signaling, including
4-1BBL/TNFSFHCD137L (Figure 6A-B). Presence of 4-1BBL in
CML and AML EVs was confirmed by westem blotting (Figure
B8C). TNF receplor superfamily was recently implicated in Treg
function, though by far mainly in the small intestine, colon, and

Figure 3 (continued) iTregs (CO4 'CD25  — Foxpd ' iTreg as in Figure 18-8) after reatment wits CML EVs (KS62-denved). Data are from 4 esperiments, n = <. Single
daa pairts, cornected for each experimant, ara presemed. (G} Analysis of phospharylation of 56 and STATE in Tregs aftar treatmant with AML EVs (MOLM-14-darvad).

Data are from 5 esperimants, m — 5. Single data poirts, connested for sach experiment, are presented. For panels A and C, cels were gated as n supplemental Figure 34,
using artibadizs conjugatad wih flusrochromes as in eupplemental Table 1. (D) Analysis of phosphaorylation of S8 and STATS in Tocony dfferentating into Tregs
(C0atGO26~ — Foupa™® Treg as in Fgura 1A:8) after traarment with AML Eve (MOLM:14-dervacd). Data are from 3 exparmenms, n = 3. Singls cata points, connactad

foar sl expariment, are presented. For panels B and D, cells wens gated s in suppemental Fgune 28, using antibodies conjugated with Tuorcehrames as in supplemsntal

Table 1. (E) Leval of methyation of TSDR region in the FoxpS gene in Tregs treated with leukemic EVs (KEE2-derivad, Toony served as positve controll. Data are from 3

experiments, n = 3, Mean * S0 is preseried, (F) Secration of efectorproinflammalory cytokines [paiml. calculaled per 1 % 105 cells; final concentralion shown on graphs)
detecled in cultured medium of contrel Tregs o Tregs sullared with leukemic EVe (KS82-derved). Data are from & experiments n — B, For al experiments in the ligurs,
sratistios was 2-tajlad paired ¢test, °0 < 05 YO . 01, 7P - 001, SO, stardard deviatian,
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during colitis.***® Wa hypothesized that it may also contribute to
EVs-mediated eTreg polarization in myeloid leukemias. Using
CRISPR/Cas® mutagenesis, we generated 4-1BBL-deficient
K562 CML cells, leading to the absence of 4-1BBL in CML cells
and EVs (Figure 6D; supplemental Figure 13A). Tregs treated with
4-1BBL~deficient CML EVs no longer upregulated CD30, TNFR2,
and LAG-3 (Figure BE, but not the remaining receplors upregu-
lated by leukemic EVs, such as CD39 or Foxp3; supplemental

@ blood advances 22 marcH 2022 - VOLUME 6, NUMBER 6

Figure 13B-C), as well as exhibited weaker suppressive activity in
a functional in vitro suppression assay (Figure 6F; supplemental
Figure 13D). These data demonstrate the regulatory role of
4-1BBL in promotion of Treg activity and effector phenotype.

Overall, we postulate that TNF superfamily protein 4-1BBL contrib-
utes to effector immunosuppressive polarization of Tregs promoted
by leukemic EVs.
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Discussion

In the presented study, we report leukemic (CML and AML) extra-
cellular vesicles as novel, significant drivers of human immunosup-
pressive Foxp3™ Tregs with an effector phenotype, including 2
distinct effector subsets (Figure 7). We show this by complemen-
tary approaches, using pure leukemic EVs released by human cell
lines and primary EVs isolated from the plasma of leukemic patients,
compared with EVs of healthy donors. Using the mouse model of
CML-like disease, we showed that leukemic EVs-Tregs interaction
facilitates the development of leukemia-like disease, which impli-
cates importance for human leukemia.

EVs enable intercellular communication between distant tissues and
cells. EVs may thus promote the growth of leukemic cels outside
the BM by creating leukemia-permissive microenvironment in
faraway tissues. It has already been established that Tregs and
immunosuppression are critical elements that facilitate such
leukemia-supporting conditions.>®'" We found that circulating, pri-
mary EVs from plasma of CML and AML patients induced Foxp3
and promoted effector signature of Tregs. This supports our hypoth-
esis that leukemic EVs in circulation may drive proleukemic Tregs
outside the BM and established a previously undescribed mecha-
nism fagilitating spreading of leukemic blasts.

Indeed, one of our critical findings, significant for myeloid neo-
plasms, is that EVs secretion facilitates leukemia development in vivo
in mice, demonstrated in a model of leukemia-like disease induced
by Rab27a™'~ CML cells with downregulated EVs secretion.
Rab27a deficiency and diminished release of EVs in vivo partially
reversed expansion of proleukemic, activated Tregs in the BM and
spleen. In parallel, significantly lower engraftment of leukemic cells
was observed. Importantly, we excluded the role of autocrine influ-
ence of EVs on growth and clonogenicity of leukemic cells and
excluded the involvement of B cells or immune myeloid cells in the
identified effects. These obsarvations strongly suggest direct modu-
lation of Tregs by CML EVs in vivo and the relevance of EVs-Tregs
interaction for leukemia progression. Even if leukemic EVs have
been shown to modulate other components of the BM niche,”**®
and we cannot entirely conclude that the effect depends solely on
Tregs and immunosuppression, our data indicate significant involve-
ment of Tregs. In a translational context, our in vivo discoveries pro-
vide rationale for therapeutic targeting of EVs/Rab27a in leukemias.
Similar conclusions have been drawn by Poggio et al,' based on
mouse models of Rab27a ' ocolorectal and prostate cancers,
where targeting EVs also targeted immune checkpoint molecule
PD-L1. EVs secretion may be clinically targeted by pharmacological
inhibitors of Rab27a*® or other EV-regulatory hubs (nSMase2).*®
In our experiments, such treatment indeed attenuates expansion of

Tregs in cultures of human PBMCs and leukemic cells. Overall,
our discoveries identified leukemic, Rab27a-dependent EVs and
EVs-Tregs interaction as potential, previously unrecognized, thera-
peutic targets in myeloid neaplasms.

Recent studies of Tregs in cancer have identified new molecules
specific for tumor Tregs, such as CCR8,** CD3a0, IL21R* and
others,®' as well as specific eTreg subsets.*' Remarkably, our find-
ings provide evidence that leukemic EVs contribute to the expansion
of highly suppressive effector subsets of Tregs and promote spe-
cific effactor signatures of Tregs, which has not been previously dis-
sected in the cancer field. The eTregl subset we described had
high expression of CCR8, CD30, and TNFR2, as well as transcrip-
tion factor IRF4 {supplemental Figure 12B). It thus resembles an
effector, IRF4-driven Treg population described in lung cancer.*!
On the other hand, tissue and cellular context for these molecules in
myeloid neoplasms remain to be elucidated, such as expression of
CCR8 chemokine ligands in the leukemic BM. Presence of TNFR2,
which is usually expressed by T cell receptor-activaled Tregs.*
implies interaction with antigen-presenting cells, such as tolerogenic
denditic cells.® The ubiquitous expression of CD38 and TIGIT on
the eTreg2 subset we identified suggests different function of this
population in the leukemic microenvironment. TIGIT acts as a coinhi-
bitory receptor, capable of inhibiting Th1- and Th17-polanzed CD4~
T cells,&’ whereas CD39 is an ectoenzyme, converting adenosine
triphosphate to adenosine (jointly with CD73), also to inhibit effector
T cells®* Moreover, CD39 on Tregs can support hematopoietic
stem cells in the BM,*® which implies possible interaction of eTreg2
with leukemic stem cells. Thus, even though identified populations
of Tregs have well-documented immunosuppressive phenotype and
function, it would be important to dissect the precise relevance of
eTreg1 and eTreg?2 in the leukemic microenvironment, both function-
ally and spatially. The significance of leukemic EVs-Tregs interaction
is further highlighted by our discoveries of molecular regulators. We
identified transcription factors that may be responsible for driving
eTreg or markers of eTregs in myeloid neoplasms. Some of them,
such as EGR8*® E2F4*° ZBTBYALRF®” or TFDP1*' have
already been implicated in regulation of Tregs, as well as in tumors.
We also pinpoint that although leukemic EVs modulate mTOR and
STATS pathways, they do not engage TGF-B/SMAD signaling,
which classically induces de novo Foxp3 expression,® implicating a
new modality of Treg induction and modulation.

Finally, we detected a functional role of TNF superfamily member
4-1BBL/TNFSFS/CD137L in leukemic EVs and propose that its
presence contributes to the amplified immunosuppressive poten-
tial of Tregs. According to ExoCarta database, 4-1BBL protein
was previously not detected in EVs®® but was identified on hema-
topoietic and progenitor cells in the BM.®” Moreover, 4-1BB

Figure 5 ) 7500 isample, were Gonc 1 and used to create tSNE map and FlowSOM clustering scheme. (C) Abundarce of Treg subsets (identified
by FlowSOM as in pane! B} in CTRL and CML EV (K562-derivad)-treated Tregs. (D} Exprassion (fold change io CTRL samples) of tumar Treg markers after {reatment of
Trags with CML EVs (KB62-darived). For TNFR2, Foxp3, IRF4, and BATF, gMFl was analyzed; for other markers, percant of positive cells. For panels C and D, dala are from
4 exparments, n = 8. {E} Abundarce of Treg subse:s (identfied by FlowSOM as n parel B) in CTRL and AML EV (MOLM-14-derived)-trected Trags. (F) Expression (fold
change to CTRL sampias} of tumor Treg markers after treatment of Tregs with AML EVe (MOLM-14-derived). For TNFRZ2. Foxp3, IRF4, and BATF, gMFI was analyzed; for
other markers, percent of positive calls. For panels E and F, data ara frem 4 experiments, n = 8. For panelz C through F, statistios were unpared ¢ teets with Welch's

correctian. *P <1 05, P < 01, ***P < 001, ***P < .0001. (G) Expression of selected tumor Treg markers after freatmen: of Tregs with primary patients’ plasma EVs,
compared with healthy doners’ (HD) plasma EVs. For leukemic group, plasma from 3 AML and 7 CML patients was used. For TNFR2. gMFI was analyzed; for other markers,
percent of pasitive celis. N = 10 CML/AML patients and 10 healthy donces. Paring was done for samples that were used 1o treat the same batch of (primary) Tregs. Two-
tailed paired ! test, *P - 06, P < .01, Gating strateqy far Treg phenotyping is shown in supplemental Figure 12A. gMFI, geometric mean flucrescence intensity,
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receptor is highly expressed on Tregs in tumors ¥*' Our conclu-
sion is also supported by recent findings, which have deman-
strated relevance of 4-1BBL/4-1BB signaling in Treg activation,
physiological function, and transcriptomic  identity.***®  Qur
results pinpoint 4-1BBL as a new protein engaged in the upregu-
lation of suppressive activity and eTreg phenotype in leukemia,
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and we show, to our knowledge for the first time, that 4-1BBL
signaling may occur via EVe. Such findings may have a diagnostic
and therapeutic walus, and 4-1BBL expression in leukemic EVs
could be considered in liquid biopsy approaches as an early bio-
marker of leukemia and immunosuppression in CMLAAML, Sub-
stantial advances in the extracellular vesicles field have been
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developed for such approach, in terms of quick and effective phe-
notyping of EVs in plasma, for instance by EV-cytometry.®"

In conclusion, we discovered a proleukemic, immunosuppressive
mechanism, dependent on 4-1BBL-containing EVs derived from
CML and AML cells. Leukemic EVs act as drivers of effector sub-
sets and highly suppressive phenotype of Tregs. Our findings dem-
onstrate the rationale to target Rab27a-dependent EV secretion,
which may lead to prospective therapeutic applications aimed at
attenuating immunosuppression in myeloid neoplasms.
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Abstract

The use of anticancer peptides (ACPs) as an alternative/complementary strategy to
conventional chemotherapy treatments has been shown to decrease drug resistance
and/or severe side effects. However, the efficacy of the positively-charged ACP is
inhibited by elevated levels of negatively-charged cell-surface components which trap
the peptides and prevent their contact with the cell membrane. Consequently, this
decreases ACP-mediated membrane pore formation and cell lysis. Negatively-charged
heparan sulphate (HS) and chondroitin sulphate (CS) have been shown to inhibit the
cytotoxic effect of ACPs,

In this study, we propose a strategy to promote the broad utilization of ACPs. In this
context, we developed a drug repositioning pipeline to analyse transcriptomics data
generated for four different cancer cell lines (A549, HEPG2, HT29, and MCF7) treated
with hundreds of drugs in the LINCS L1000 project. Based on previous studies iden-
tifying genes modulating levels of the glycosaminoglycans (GAGs) HS and CS at the
cell surface, our analysis aimed at identifying drugs inhibiting genes correlated with
high HS and CS levels. As a result, we identified six chemicals as likely repositionable
drugs with the potential to enhance the performance of ACPs. The codes in R and
Python programming languages are publicly available in https:/github.com/ElyasMo/
ACPs HS HSPGs CS.

As a conclusion, these sixdrugs are highlighted as excellent targets for synergistic stud-
ies with ACPs aimed at lowering the costs associated with ACP-treatment.
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cancer, drug repositioning, heparan sulfate, LINCS L1000, therapeutic peptides
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1 | INTRODUCTION

Cancer is known as the second leading cause of death after cardio-
vascular disease’] Due to the heterogeneous nature of cancer in
the same type of tumour in different individuals (intertumoral hetero
geneity) and among cancer cells within the same tumaur (intratumoral
heterogeneity), finding an accurate and reliable treatment has always
been a challenge for scientists!2] Current treatment methods are
costly and cause adverse side effects.*] For instance, the oxidative
stress-mediated injury of doxorubicin as a conventional chemothera-
peutic drug has adverse effects on the kidm:'y,‘“ beain,®! and heart 161
Additionally, tumours resistant to chemotropic drugs, for example,
metastatic breast cancers resistant to taxanes and anthracyclines,
are another obstacle impeding development of effective treatment 17
Hence, investigation of an alternative method to help address conven-
tional chemotropic drugs’ limitations is crucial.

Cation therapeutic peptides with anti-cancerous features are toxic
to cancer cells!®! Compared with antibodies and small molecules, anti-
cancer peptides (ACPs) are more selective and benefit fram higher pen-
etration rate and easy modifications,!*] Two of the significant modes
of action of ACPs are apoptosis and necrosis by membrane lysis or
pore formation! %! Contrary to malignant cells, healthy cells are pro-
tected against ACPs due to their membrane's unique features. For
instance, a higher level of cholesterol in healthy cellsinhibits lytic activ-
ity and protects the membrane against the Iytic action of ACPs by
madifying membrane ﬂuidity.“ﬂ On the other hand, cancer cells show
more membrane fluidity and abundant microvilli, which increase the
cell surface arca/1?! In addition to this, nogatively-charged compo-
nents on the surface of malignant cells cause membrane destabiliza-
tion, cytotoxicity and cancer cell lysis when interacling with ACPs[13]
This is not an issue for healthy cells since they have electrically neu-
tral cell surfaces.| ™V Finally, it should be nated that the primary force
of interaction between ACPs and healthy cell membrane are hydropho-
bicinteractions. Incontrast, the forces between ACPs and cancer cells
are clectrostatic interactions. 2’ As a result, no matter how heteroge-
necus cancer cells are, ACPs can preferentially eliminate a wide range
of malignant cells %]

It has been shown that some components at the surface of the
cancer cell membrane have an influence on cell susceptibility to
ACPs!1617) ACPs interact with the two glycosaminoglycans (GAGS)
heparan sulphate(HS) and chondraitin sulphate (CS), which are present
on the surface of most cells. Although negatively-charged molecules
at the cell surface of cancer cells increase the selectivity of ACPs,
some of them actually inhibit their cytotoxic activity. In other words,
HS and CS at the surface of cancer cells sequester ACPs away from
the phospholipid bilayer, and thereby impede their ability to induce
cytolysis 171 As such. further investigation on HS and CS and how to
modity their aggregaticn at the cell surface is needed. For instance,
the genes that directly or indirectly cause changes in the level of
HS and CS at the surface of cancer cells or the drugs that esca-
late or diminish the amount of these cell-surface components are
currently under-studied. Using the aforementioned drugs to study
their synergistic effect with ACPs in further studies may decrease

the cost of utilization of ACPs and improve their perfarmance. In
addition. according to our developed pipeline, safety-certified chem-
icals would be used in synergistic studies to find new functions for
previously known perturbations, The drug repositioning approach
may significantly reduce the required time and investment in drug
development | 181%1

2 | MATERIAL AND METHODS

2.1 | Parsing the data and data manipulation

We retrieved normalized gene expression profiles of landmark genes
and imputed transcripts for four different cancer cell lines, A549,
HEPG2, MCF7,and HT-29 (Table 1), treated with either drug or control
(DMSO), from the LINCS L1000 database for a total of 12328 genes
more than 900 drugs. To this end. normalized gene expression pro-
files of landmark genes and imputed transcripts were parsed through
the Slinky R package (version 1.8.0)12% for both control (treated with
DMSQ) and treatment {treated with various drugs) with the highest
standard dose {10 um) and longest time points (24 h) (Figure 1A).

Log fold changes (LFC) were computed through the NumPy library
(version 1.19.1} in Python 3.7.6. To avoid undefined LFC values due
to division by zero or loga transformation of non-positive numbers,
one was added to gene expression values for both treatment and con-
trol before transformation. As a result, we produced LFCs for four
different cancer cell lines across about 12,000 genes and 900 drugs
(Figure 1B).

2.2 | Computing gene-gene correlation

LFCs were used to compule gene-gene correlations, The compu-
tations were performed on resources provided by SNIC through
Uppsala Multidisciplinary Centre for Advanced Computational Sci-
ence. Spearman {SPj, Pearson (PE), and Kendall tau rank (KE) cor-
relation coefficients were determined using SciPy (version 1.5.2)
scipy.stats.spearmanr, scipy.stats.pearsonr, and scipy.stats.kendalltau
functions. respectively. 1! All three correlation methods were applied
Lo the A54% cancer cell line LFCs to determine the best statistical
method o calculate gene-gene correlation in the other three can-
cer cell lines (Figure 1C). Computational optimisation was achieved
by omitting correlations with self and correlations reciprocal to those
already tested. False discovery rate (FDR) was determinad from corre-
lation p-values by scipy.stats.rankdata 121

2.3 | Functional analysis

To determine the most meaningful correlation method, correlations
were sorted based on each method's FDRs and the top 100 and 500 co-
expressed gene pairs were considered for functional analysis, as previ-
ously described 221 ClusterProfiler R package (version 3.16.1)' %% was
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TABLE1 Cancercelllines

Cellid Primary site Subtype Growth pattern ATCC Age Sex
A549 Lung Non-small cell lung cancer| carcinoma Adherent CCL-185 58 M
HEPG2 Liver Hepatocellular carcinoma Adherent HB-8065 15 ™M
HT29 Large intestine Calarectal adenocarcinoma Adherent HTB-38 44 F
MCF7 Breast Adenocarcinoma Adherent HTB-22 69 F

©

Thres correlation values
M
Kendell tau (AB49)

Genes = 12328
Gene comrelation == Five milllons

Correlation values

Common HS and C5

co~cxpressod genes

Common HS and C&

00~exprossod ganes
%

HS and CS co-expressed genss

® ®
FIGURE 1 LINCSL1CCO provides the opportunity to discover signals from a vast amount of data. (A) Control and drug-treated transcriptomic
datasets for four cancer cell lines were retrieved from the LINCS L1000 database. (B) Log fold changes {(LFCs) for expression values were
computed for all four cancer cell lines, (C) To find a reference statistical method to compute gene-gene correlations, three methods {Pearson,
Spearman, Kendell tau) were evaluated using the A549 LFC matrix. (D) The chosen statistical method to compute gene-gene correlations was
applied to all four cancer cell lines. (E} The correlations with experimentally validated HC and CS genes were extracted. (F) As the first filtration
step, only common co-expressed genes with experimentally supported HC and CS genes in all four gene-gene correlation data frames
(corresponding to four cancer cells) were considered. {G) Retrieved genes from step 6 and their expression values along all perturbations were
extracted from four matrixesin step 2. (H) The drugs which cause up or downregulations in most of the selected genes were placed in two

separated data frames; red: downregulated genes, green: upregulated genes. (1) As the second filtration step, drugs that jointly cause up or
down-regulation of most selected genes in all four cancer cells were extracted

used to find enriched terms based on the two sets of significantly co- 2.4 | HS- and CS-related genes

expressed gene pairs. The correlation method which resulted in mere

enriched terms in the functional analysis, was chosen and applied to To extract gene-gene correlations related to HS and CS, we first
three remaining cancer cell lines (Figure 1D). retrieved experimentally validated genes from the literaturel24.251
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Genes thal were highly correlated with genes in this list were consid-
ered in the downstream analysis (Figure 1E).

25 | Discovering probahble common co-expressed
genes with HS and CS genes

To diminish the probahbility of false positives, for each experimentally
validated gene, common co-expressed genes across all four cancer cell
lines were relrieved (Figure 1FL The top ten [based on FDR} cam-
maon co-expressed genes for each experimentally validated gene were
accepted for downstream analysis, Across all drugs, LFCs of these cho-
sensets of genes, inadditionto the Lab-identified genes, were accepted
for downstream analysis. (Figure 10G).

To investigate the pathways related to the selected genes, KEGG

and gene ontology (GO) analysis was performed by cluster Profiler 23]

2.6 | Discovering common drugs which are likely to
cause up/downregulation in HS and CS genes

To monitor the effect of drugs on selected genss’ expression in the
four different cancer cell lines, heatmaps were generated of LFCs per
drug. By inspection of the heatmap, drugs that did not depict a signif-
icant gene up- or downregulation effect were deermned non-effective
and omitted from further analysis. The remaining drigs were catego-
rized into up and down groups according to the direction of their gene
regulation (Figure 1H). Again, to diminish the probability of false posi-
tives. only common drugs in all four cancer cell lines which cause dovn-
regulation were investigated to be proposed as promising reposition-
able drugs and a candidate in complementary treatment studies with
ACPs against cancer (Figure 11),

3 | RESULTS

3.1 | Parsing the data and data manipulation

The LINCS L1000 project as a new gene expression profiling method
has provided an excellent opportunily to study the mechanism of
action of small molecules, functionally annotate genetic variants of dis-
ease genes, and inform clinical trials by collecting gene expression pro-
files for thousands of drugs at & variety of time points, doses, and cell
lines.| 2% Taking the massive amount of data preduced by LINCS L1000
into account and parsing the data would be computationally inten-
sive, To add ress this issue, various methods have been developed,| 29271
In this study, four cancer cell lines, including A54%, HEPGZ, MCF7,
and HT-2% were considered due to their extensive use in ACP stud-
ies (Table 1).)7%7%1 \We determined log fold change (LFC) values for
drug compared to control for each gene in each cancer cell line. LFC
describes how much expression values change between these two con-

ditions.

TABLE 2 GO and KEGG pathway enrichment analysis to
determine the optimal gene-gene correlation method, Pearson (PE).
Spearman (SP), or, Kendall tau (KE)

Statistical Input Number of enriched terms

method GO KEGG

FE Firsl 10D pairs u} |
First 500 pairs <4 8

B First 100 pairs 0 o
First 500 pairs 5 i

KE First 100 pairs 5 B
First 500 pairs 3 Z

Abbreviations: PE, Pearson; 5P, Spearman; KE, Kendall tau,

3.2 | Functional analysis

To find the best statistical methad which discovers the most meaning-
ful co-expression correlations in our datasets, Spearman (5F), Pearson
(PE), and Kendall tau (KE) methods were evaluated for the A549. PE
autperformed 5P and KE based an the number of significantly enriched
terms (adjusted p-value < 0.5) (Table 2] {Figure 2).

Concerning the top 100 co-expressed gene pairs, both KEGG and
GO pathway analysis depict better KE performance compared with
FE and 5P. However, looking at the top 500 co-oxpressed gene pairs,
FE depicts significantly mare enriched terms (Figure 51A_Table 2) and
generally more involved genes in enriched terms (Figure 2} in hoth
KEGG and GO pathway anabysis and was chosen as the reference sta-
tistical method to compute gene-gene correlations for the remaining
cancer cell lines (HEPG2, HT29, and, MCF7).

3.3 | Computing gene-gene correlation

Az the reference statistical method, PE was applied to the remain-
ing cancer cell lines [HEPGZ, HT22 and MCF7) to calculate gene-
gene co-expression correlations. Considering those gene-gene corre-
lations that appeared in all four cell lines and involving genes already
known in the literature to be associated with HS and CS [Table 3:
first row: experimentally validated genes! 2729251} ane and zero gene
correlations were faund for AGRN and CHST3, respectively, Ten sig-
nificantly co-expressed genes were introduced for the rest of the
laboratory-validated HS and CS genes. Considering that the in silico-
driven gene-gene associations are common between all four can
cer cell lines, biclogical correlations between these genes could be
expected.

To investigate the pathways related to selected genes (Table 3}, we
conducted KEGG and GO analysis. GO analysis identified Golgi lumen,
which is significant as thisiswhere EXT1 and EXTZ forma stable com-
plex that accumulates in the Golgi apparatus and catalyses the syn-
thesis of H51?! In addition to this, collazen-containing extracellular
matrix, where HS and €5 are available 1] was the highest enriched
term (Figure 34, a and b), On the other hand, KEGG pathway analysis
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FIGURE 2 Heatplots of GO enriched terms and their corresponding genes to illustrate the perfermance of different statistical methods in
finding meaningful gene-gene co-expression correlations. {A) Pearson correlation {PE) using the top 500 gene pairs. (B) Spearman correlation (SP)
using the top 500 gene pairs. (C) Kendall tau rank correlation [KE) using the top 100 (left) and top S00 (right) gene pairs

Deup cedidans

F |

Threg oo ftares.

—

Lot-valifined geves

s
By o) pid o v Ins s
~ Docisin ol ) Toga
o6 ezl 3 & SERT
ShyoosaTiron yzan osThes s | ks
s ~ chontmein SR BTN B0 AT e
ow ame
,

it

s a0
PR 3 P st aw 86 ancaqdoe rheachen |
el =
! |
8 & & -

FIGURE 3 Monitering the gene functions and their expression alterations againstdrugs. (A) Pathway analysis of selected genes revealed
enriched terms related to HS and CS. a) GO analysis. b) lllustration of genes that are related to GO pathways. ¢) KEGG analysis. d) Visualisation of
genes that are asscciated with the first twe KEGG pathways. (B) There is a consistency between the effect of proposed drugs on all introduced HS
and CS genes and only lab-validated HS and CS genes. a) The effect of proposed drugs on all introduced HS and CS genes and b) lab-validated HS

and C5 genes
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TABLE 3 Thelist of HS and CS top ten common co-expressed genes. Laboratory validated genes and their associated co-expressed genes are

presented in the first column and rows respectively

Experimentally

validated genes  Predicted co-expressed genes with experimentally validated CS and/or HS genes

AGRN ZNF580

B3IGAT3 BSCLZ  COXS8A DRAPL  MAP2K2 CD151  LSM4 REMS FIBP  GPRS7 UBE2M
CHPF SLCAAZ TRIMAG ADAMTS13 SCNN1D SLCB8A2 CORT HOXAZ RAB11E THRB OBSCN
CHST3

CHST? JAKMIPZ SLCO1C1 GRIAL CYP19A1 CDé8 SMARCA1 CHST2  FGR GPSM2 MMP19
CHST11 UBQLNA  alpk1 LPAR3 ZNF &85 sall2 PODNLT KIAADT141  DAPPY PLVAP MRNIP
CHST12 CMTR1 WDR74 POGK THUMPD2 COA7 Irchd SMGS

CHSY1 YTHDF2 7ZNF154 BARX1  WNT3  PCDHGBS KRT83  APOL5  SAMD4B KALRN OR2C1
coL18A1 SLC6A12  SERPINF2 UPB1 DNAJAT  F11 HNF4A  PKIR ASGR1  AGPAT3 F2
CSGALNACT1 AFF1 SLC1A7 CDIP1 GDF10 IL9R NOCT INSLL KLK12 ARTN IL1B
DSE GLOD4 FOXL2  TUBAS  CLEC4A  FGD2 PSMG2  TEX14  TLR?  PCDHBI3  VWA?
EXT1 ACVRLT 7ZNF141 ACKRZ  TRIM13  KCNH6  adamts12 PTK2B  SCN2A  PTPRF PAFAH1B1
EXT2 ZC3H11A GLOD4  IST1 NUPE2  RPLI6AL TXLNA  MRFAPILL RABSA  CHMP7 SNV
EXTL2 GLMN SLC25A17 ACADM ARF1 ZKSCAN3 SLC12A3 INPP4A SYP DDX39A FPGT
GLCE ALDHI1AL WwP1 SGTA PCGF1 GUK1 slc35a1 btg3 TRMT1  PIP5K1B RARRESL
GPC1 C220rf24  NEUS CORTL  pdelb  ADRA2E  KLHL1 SAG RPL3SAL KIAAQ391  CRMP1
GPC3 AFP APOA2 AHSG DUsSPg SERPIND1 SOAT2 AMEBP ITIH2 emxl BMP10
GPC4 TREM2 STK19 KDR sall2 YIPF3 LINCO0894 CDH13 KIF17 GHRHR PCLO
GPC5 OR2J3 CLSPN PBOV1 DRD1 B3GALT1 GPR85 MYOZA CDH9 G51-600G8.3 OR2J2
HS25T1 DHX15 cuc LSM4 ARLAC NUP&2 POP4 KATNB1 ATPIB1 PPPICA WDRB2Z
HS535T1 LK1 SELL RBMS SELL CHKB MTFR1  RAB32  ICMT  ADCY7 ME1
HS35T2 SYN1 MS4AS IL1RAPL2 CETN1 GlB4 GPR52 FSCN3 ORI10H3  scubed LILRBS
HS6ST1 ERN1 ALX4 GRIN1 AKT2 ARR3 TRIM45 TMEM143 OBSCN ART1 CACNAIE
NDST1 MMP14 SPTENZ  EPNL MYLIO  QIRT1  SLC12A9 ALGI2  arvef  TP53I11 CDC42EP1
NDST2 HTRIB  RCVRN  CRYGA  SNX29  EMILIN2 PCDHB1  emxl OR2H1  TRHR CHRMS
NDST3 WRNIP1  KIAAC408 CNKSR2  TRHR GRINZB  DCC TMEM19 ALX4  ATP8B3 ZNF549
NDST4 ACKR2  ADAM1S PSG11 NTNGI  HCNé  DCC GPRS0  TACRZ  RFX3 TRPC3
sDC2 KCTD20  ARSB FPR3 EFCAB1  NEU3 INHBC ~ CPEDL  CSRNP3 ADCYAP1  RBBP?
S5DC3 S5YN3 GFRA4 GRIN2B CHD2 KCNJ5 CETN1 maspl DCLK2 GPR173 LINCCO894
sDC4 OSBPL2  ATPEVIEL FGFRZ CALM3  CD$ ACAN DSTN DFFA  NIT1 PAPD?
SULF1 THBS2 CDH13 Kiaa14a62  ACVRL1 GPRCSD NOX4 IFNAR1 CHKB SPINZA CcCcL1
UsT DYM PLSCR2 1QCH zbtb3 FLRT1 GFM1 ZNF701 F2RL3 MYO78 DCAF4

revealed glycosaminoglycan biosynthesis of HS and CS as the top two
enriched terms (Figure 3A,c and d}.

34 | Inferring drugs that deregulate HS and CS
imputed and validated genes

The expression profile of HS and CS co-expressed genes were
extracted from LFCs of all four cancer cells, The heatmap was used to
identify the drugs that cause upidown-regulation of these genes. On
the left and right side of each plot, the effect of drugs on down and

upregulations of most introduced genes is presented (Figure S1B,a).
Figure $1B,b is an abstract of Figure $1B.a. in which ineffective drugs
arc omitted,

Finally, only the drugs which had the same role (in case of up or
downregulation) in all four cancer cell lines were predicted as the mest
likely agents affecting the expression of HS and CS genes (Figure 3B).

Accordingly, 16 (Table S1) and 6 (Table 4) drugs were discovered,
which might upregulate and downregulate the expression of HS
and CS genes, respectively. Among the predicted drugs. only those
which cause downregulation of HS and CS genes were proposed as
repositionable drugs. The effect of these drugs on all introduced genes
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TABLE 4 List of drugs predicted to cause down-regulation in HS and CS5 genes

Pert_iname Canonical_smiles Inchi_key Direction

BMS-777607 CCOc1een(-c2ece(Flec2)e(= O)c1C{= Q) VNBRGSXVFBYOQNN-UHFFFAOYSA-N Down
Necicec{OcZeenc(N)c2ClciF)cl

GDC-0068 CCICINC[C@@H](C(= OINTCCN(CCllcinenc2[Ca@H| GRZXWCHAXNAUHY-AHRSYUTCSA-N Down
(OIC[C@@H)(Clc12)e tece(Chect

GDC-0068 CIC@®H]1CIC@H]IC2 = C1C[= NC = N2]N3CCN(CC3) GRZXWCHAXNAUHY-NSISKUIASA-N Down
Cl=O)[C@H][CNCICIC)C4 = CC = CIC = C4)CHO

PF-04217903 OCCn1lccf{ent)-elene2nnn(Cedecedneccedc3)e2nt PDMUGYOXRHVNMO-UHFFFAOYSA-N Down

$B-239063 COclncceinl)e2elnen2C3CCCO)CTicdceclFlecd ZQUSFAUAYSEREK-UHFFFAOYSA-N Down

XMD-1499% COc LeelceciNeinefNicls1)C (= O)cle(Clicccc1ClINICCNICICCL UISRWLSAXIOCND-UHFFFAQYSA-N Down

Abbreviations: HS5, heparan sulphate: CS, chendreitin sulphate.

and only lab-validated HS and CS genes is illustrated in Figure 3B,a
and 3B.b. respectively.

4 | DISCUSSION
De novo drug discovery is a costly process that entails lengthy
trial periods and low success rates. Contrary to this approach, drug
repositioning is a promising methed for finding medications for
newly-emerged and unknown diseases, such as COVID-1911%! and
orphan and common disorders!*®] we comprehensively discussed
the urgent need for drug repurposing previously!18! |n addition, drug
repurposing using retrieved data from the LINCS L1000 database has
been performed previously!??! We developed a LINCS L1000-based
pipeline to suggest novel functions for previcusly approved drugs or
chemicals under investigation for safety validation. This pipeline aims
to introduce chemicals that may complement ACPs to be studied in
synergistic investigations against cancer. There are two advantages of
following this procedure; first, proposed chemicals may improve the
performance of ACPs by decreasing the level of HS and CS at the cell
surface and second, diminishing the utilization cost of ACPs by reduc-
ing the required dose of consumption. The same effarts with promising
outcomes have been done in vitro ™) and in silico studies| 37

With regard to the effect of GAGs on performance of therapeutic
peptides, Fadnes et al! 7] clearly showed the negative effect of HS and
CS on performance of bovine lactoferricin (LicinB) and the designer
peptide, KW3, as cationic therapeutic peptides. In agreement with
this, in our previous study, we showed strong interaction of a cationic
chimeric peptide (cLFchimera), derived from camel lactotferrin, with HS
and CS by molecular dynamic simulation. 1%’

Our developed pipeline is designed based on HS and CS experi-
mentally validated genes and their predicted gene-gene associations.
By proposing in silico—driven co-expressed genes with HS and CS
experimentally validated genes, this ambiguity may arise that how we
can make sure that discovered relationships are meaningful. In other
words, can we infer statistically proposed gene-gene correlations from
biolegical evidence? To address this question, in this section we dis-
cuss the role of HS and CS genes in different malignancies in campar-

ison with some of their predicted co-expressed genes. Besides, some

functions of co-expressed genes in protein level are also discussed. As
we see in this part, similar to HS and CS genes, many suggested co-
expressed genes have acrucial role in oncogenesis, which might be pre-
liminary evidence that the list of gene associations is prepared mean-
ingfully to pave the way for further studies to uncovered new functions
for known, and novel performances for unknown co-expressed genes,
Concerning table 3. the first row includes HS and CS experimentally
validated data while columns are likely co-expressed genes.

Interms of HS2ST1 and its proposed co-expressed genes, the prod-
uct of HS25T1, PPPACA are involved in prostate cancer' 2! and oral
squamous cell carcinoma®?] respectively. PPP1CA is a member of the
serine/threonine phosphatase complex and WDRS2 is a part of its reg-
ulatory subunits!*8! The STRING database!*?! as a protein—protcin-
interaction information source, has introduced PPP1CA and WDR82
and also DHX15 and LSM4 as co-expressed genes which interact at
the protein level. As a sign to prove why Nupé?2 is co-expressed with
HS2ST1 in reality, HIF-1alpha is likely to play a role in progressive
prostate cancer (similar to HS2ST1) and it has been shown that HIF-
1alpha is associated with nuclear pore complex Nupé?2 protein.| 401

With regard to the HS65T1 and its proposed co-expressed genes,
upregulation of H565T1 in ovarian cancer cause Increased tumour
angiogenesis 41l and mutated AKT2 regulates growth in thyroid carci-
nomas and colorectal cancer cells!42! Interestingly, the first proposed
drug in our study, A-443654, is a potent small-molecule inhibitor of Akt
sering/threonine kinases which induces Akt Ser-473 phospharylation
in all human cancers and has equal potency against AKT1, AKTZ, or
AKT3within cells.! 1)

Upregulation of NDST1 and NDST2 leads to tumour progression in
hepatocellular carcinoma. **! MMP14, anticipated co-expressed genes
with NDSTL, is introduced as a pro-metastatic gene product, which
centributes to the acquisition of metastatic phenctypes in epithelial
avarian cancer cells#5! 1tis also presented as a prognostic marker in
patients with sinonasal and oral malignant melanomal#! and prostate
cancer!?’! Besides, EMILIN2 as alikely co-expressed gene with NDST2
is a key extracellular regulator of the Wnt signalling pathway suppress-
ing breast cancer cell growth and migration.[“a]

Downregulation of SULF1 affects suppressing tumour cell prolifer-
ation and invasion in malignant mesothelioma breast cancer, pancre-
atic, ovarian and head and neck cancers! %1 Accordingly, it has been
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showen that promoter methylation of CDH13, a proposed co-cxprossed
gene with SULF1, plays a role in the endometrial carcinomal®!]
Besides, NOX4, the other co-expressed gene with SULF1, transmits ol
survival signals through the AKT-ASK1 pathwvay in pancreatic cancer
calls |22

Reduction of $DC4 is correlated with neuroblastoma-"! Accord-
ingly, it has been proved that FGFR.2 as a probable co-expressed gene
with 5DC4 is associated with intrahepatic cholangiocarcinoma.[s‘”
Besides, the prabable SDC4 and ACAM protein-protein interaction
have been proposed in the STRING database! ™

Elevation of GPC1, GPC3, and GPC5 is associated with many
cancers®5 31 NEU3, as a possible GPC1- and SDC2 co-expressed
gene, is 3 key regulator of the betal integrin-recycling pathway and
FAKAKT signalling and demenstrate its crucial role in renal cell car-
cinomas malignancy %81 SAG is known as a Kras-cooperating onco-
gene that promotes lung tumorigenesis *?) and loss of CRMP1, a co-
expressed gene with GPC1, escalates invasive phenotype of human
Glioblastoma 0 Alse, AFP a GPC3 co-expressed gene, can promote
the proliferation of hopatoma cells via activation of PI3K/A kL signalling
pathwayl® and A-44 3454, the proposed drug in our study, by induc-
ing Akt Ser-473 phosphorylation in all human cancer cell ines may
affectthis process 4% It should be mentioned that GPC3, APQAZ, SER-
FIND, ITIHZ2, AHSG, AFF, and AMEP form a protein-protein interac
tion module in STRING.?1

In terms of proposed chemicals as repositionable drugs, most
of the proposed drugs could be categorized as different groups of
inhibitors including protein kinase B{Akt) inhibitors (GDC-0068), Ithas
been shown that CGP-60474/52621 and Wz-31051%21 could be prob-
able repurposed drugs against endotoxemic process! 2! and multiple
cancers, including melanoma, adenocarcinoma, liver carcinoma, and
breast, colon, and prostate cancers!®® Besides, the extensive thera-
peutic properties of celastrol in various diseases, including inflamma-
tory diseases and cancer, neurodegenerative disorders and other dis-
cases have been reviewed comprehensively, 3 however, we only pro-
pose the chemicals which cause downregulation of HS and CS genes as
repositionable drug candidzates to enhance the performance of ACPs.
Far instance GDC-0048 which its effectiveness has been studied in
multiple turnour models %31

In conclusion, targeting HS and CS s 2 potential strategy to elimi-
nate cancer!2544 45 a promising anticancer remedy, ACPs can be used
in developing a treatment strategy against cancer due to their consid
erable advantages, including easy synthesising, high target specificity,
selectivity and low toxicity!! We proposed six drugs that diminish
HS and CS gene expressions as one of the major cbstacles on ACPs
treatment, We helieve that the synergistic effect of ACPs and these
drugs could be a likely strategy (a) to investigate the performance of
drugs on changing the HS and CS gone cxpression and (B) to moni
tar the complementary effect of ACPs and these chemicals on cancer

treatment.
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