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SUMMARY IN ENGLISH 
This doctoral thesis investigates the molecular mechanisms underlying breast cancer progression, 

focusing on genetic and transcriptomic alterations in histologically normal mammary tissues. 

Unlike prior studies that focus primarily on tumors, this work examines non-tumorous tissues to 

uncover early molecular changes that could serve as preclinical indicators of breast cancer or 

predictors of recurrence risk. We analyzed data from 184 breast cancer patients, recruited either 

with or without criteria related to prognosis, and 94 control individuals undergoing reduction 

mammoplasty. Samples collected included 267 uninvolved margin tissues at varying distances 

from the primary lesions, 184 skin or whole blood samples as reference, and 184 primary tumors, 

originating from cancer patients (Papers II, III, and manuscript under review). In addition to 

uninvolved margin tissues, 41 skin or whole blood samples were collected from control individuals 

to investigate somatic mosaicism (Papers II and manuscript under review). 

The research is grounded in the concept of field cancerization, which suggests that ostensibly 

normal tissues surrounding tumors may harbor genetic and transcriptomic changes that predispose 

them to malignancy. Leveraging cutting-edge techniques, we investigated structural chromosomal 

alterations, post-zygotic variants, and transcriptomic changes, with high sensitivity and specificity. 

The work began with establishing a comprehensive biobank of mammary tissues, which addressed 

critical challenges such as tissue heterogeneity and the difficulty of obtaining matched control 

samples. Rigorous histological validation, ensured accurate classification of non-tumorous tissues, 

distinguishing them from micrometastases or other malignant regions. This biobank provided a 

high-quality and reliable foundation for downstream analyses, overcoming variability in sample 

quality (Paper I). 

The next phase focused on the genetic profiling of non-tumorous tissues. Employing single 

nucleotide polymorphism arrays, whole exome sequencing, and ultra-sensitive duplex sequencing, 

we identified structural chromosomal alterations and low-frequency pathogenic post-zygotic 

variants, such as in AKT1, PIK3CA, and TP53 which are typically associated with cancer but were 

also detected in histologically normal tissues. These findings challenge the conventional 

understanding of non-tumorous tissues as passive bystanders, highlighting their active role in early 

tumorigenic processes (Paper II). 
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Building on these genetic insights, RNA-seq-based transcriptomic profiling was performed to 

identify gene expression patterns in non-tumorous tissues at various distances from the primary 

lesions of breast cancer patients with adverse outcomes. Advanced bioinformatics tools, including 

pathway enrichment and survival analyses, revealed a distinct molecular signature involving 

keratins, adhesion proteins, oncogenes, and tumor suppressors present in histologically normal 

mammary gland samples of breast cancer patients who experienced recurrent disease, metastasis, 

secondary tumors, or death within a 10-year follow-up period. Key pathways such as cell adhesion, 

hormone signaling, and immune regulation were identified as critical players in early tumorigenic 

processes. These molecular signatures were correlated with patient survival data, demonstrating 

their utility in predicting recurrence risk (Paper III). 

Lastly, we focused on pathogenic post-zygotic variants in non-tumorous tissues from the same 

breast cancer cohort. An abundance of these variants was observed in the normal mammary gland 

of patients with poor prognoses, often affecting genes known to drive tumor progression (i.e. ATK1, 

PIK3CA, PTEN, TBX3, TP53) (unpublished findings, manuscript under review). These variants 

appeared to worsen patient survival, especially in patients with recurrent disease. These findings 

emphasize the importance of analyzing non-tumorous tissues as they harbor alterations strongly 

associated with aggressive cancer phenotypes and poorer survival outcomes. By integrating 

molecular findings with survival metrics, the study demonstrated the clinical relevance of these 

alterations, which were both detectable and associated with clinical outcomes. 

This research addressed critical methodological challenges, including the identification of truly 

non-tumorous tissues through rigorous histological verification, and the detection of early 

transcriptomic alterations and low-frequency variants using ultra-sensitive techniques. The 

inclusion of control samples from reduction mammoplasty surgeries provided a baseline for 

distinguishing malignant tissues from normal ones with early molecular changes. 

Collectively, these findings challenge the assumption that histological markers fully capture 

underlying molecular aberrations. They confirm the existence of an intermediate state, where 

microscopically normal tissues harbor alterations driving tumor initiation and metastasis. 

Uninvolved mammary tissues are shown to play an active role in cancer progression through early 

tumorigenic processes. 



9 

 

By combining genetic and transcriptomic analyses with long-term clinical data, this thesis offers a 

comprehensive understanding of how molecular changes drive tumor initiation and recurrence. 

These findings have significant implications for early detection, recurrence risk assessment, and 

personalized treatment strategies, paving the way for future studies to improve breast cancer 

outcomes through earlier, more precise interventions. 

Keywords: breast cancer, uninvolved margin, mammary gland, transcriptomic alterations, post-

zygotic variants, single nucleotide polymorphisms, copy number variations, somatic mosaicism, 

mortality, recurrence, poor prognosis. 
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SUMMARY IN POLISH 

Niniejsza rozprawa doktorska bada molekularne mechanizmy leżące u podstaw progresji raka 

piersi, koncentrując się na zmianach genetycznych i transkryptomicznych w histologicznie 

prawidłowych tkankach gruczołu sutkowego. W przeciwieństwie do wcześniejszych badań 

skupiających się głównie na guzach, w niniejszej pracy wykonano analizę tkanek niezmienionych 

nowotworowo w celu wykrycia wczesnych zmian molekularnych, które mogą stanowić wskaźniki 

przedkliniczne raka piersi lub predyktory ryzyka nawrotu. Przeanalizowano dane pochodzące od 

184 pacjentek z rakiem piersi, rekrutowanych zarówno z kryteriami dotyczącymi rokowania, jak i 

bez nich, oraz 94 osób kontrolnych poddanych redukcyjnej mammoplastyce. Pobranie próbek 

obejmowało 267 tkanek z marginesu wolnego od zmian nowotworowych w różnej odległości od 

pierwotnych zmian, 184 próbki skóry lub krwi obwodowej jako materiał odniesienia oraz 184 guzy 

pierwotne pochodzące od pacjentek z rakiem piersi (Artykuły II, III i IV). Dodatkowo od 41 osób 

kontrolnych pobrano próbki skóry lub pełnej krwi w celu zbadania mozaikowatości somatycznej 

(Artykuły II i IV). 

Badania opierają się na koncepcji pola nowotworzenia (ang. field cancerization), która sugeruje, 

że pozornie normalne tkanki otaczające guzy mogą zawierać zmiany genetyczne i 

transkryptomiczne predysponujące je do transformacji nowotworowej. Wykorzystując 

nowoczesne techniki, zbadano strukturalne zmiany chromosomalne, warianty postzygotyczne oraz 

zmiany transkryptomiczne z wysoką czułością i swoistością. 

Praca rozpoczęła się od utworzenia kompleksowego biobanku tkanek gruczołu sutkowego, który 

rozwiązywał kluczowe wyzwania, takie jak heterogeniczność tkanek i trudności w uzyskaniu 

dopasowanych próbek kontrolnych. Rygorystyczna walidacja histologiczna zapewniła dokładną 

klasyfikację tkanek niezmienionych nowotworowo, pozwalając na ich odróżnienie od 

mikroprzerzutów lub innych zmian złośliwych. Ten biobank stanowił wysokiej jakości, 

niezawodną bazę do dalszych analiz, niwelując zmienność jakości próbek (Artykuł I). 

Kolejny etap dotyczył profilowania genetycznego tkanek niezmienionych nowotworowo. Z 

wykorzystaniem mikromacierzy SNP, sekwencjonowania egzomu i ultraczułego 

sekwencjonowania dupleksowego zidentyfikowano strukturalne zmiany chromosomalne i 

patogenne warianty postzygotyczne o niskiej częstości, w genach takich jak AKT1, PIK3CA i TP53, 
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które są zwykle związane z rakiem, ale zostały również wykryte w histologicznie prawidłowych 

tkankach. Odkrycia te podważają tradycyjne rozumienie tkanek niezmienionych nowotworowo 

jako „biernych obserwatorów”, wskazując na ich aktywną rolę we wczesnych procesach 

nowotworzenia (Artykuł II). 

Na podstawie wniosków z genetycznej części badania przeprowadzono profilowanie 

transkryptomiczne oparte na RNA-seq w celu identyfikacji wzorców ekspresji genów w tkankach 

nietumorowych w różnej odległości od pierwotnych zmian u pacjentek z rakiem piersi i 

niekorzystnym rokowaniem. Zaawansowane narzędzia bioinformatyczne, w tym analizy 

wzbogacenia ścieżek i przeżycia, wykazały unikatową sygnaturę molekularną obejmującą 

keratyny, białka adhezyjne, onkogeny i geny supresorowe obecną w histologicznie prawidłowych 

próbkach gruczołu sutkowego pacjentek z nawrotem choroby, przerzutami, wtórnymi guzami lub 

zgonem w ciągu 10-letniej obserwacji. Kluczowe szlaki, takie jak adhezja komórkowa, 

sygnalizacja hormonalna i regulacja immunologiczna, zostały zidentyfikowane jako istotne w 

procesach wczesnego nowotworzenia. Podpisy molekularne skorelowano z danymi dotyczącymi 

przeżycia, co potwierdziło ich przydatność w przewidywaniu ryzyka nawrotu (Artykuł III). 

Na koniec skupiono się na patogennych wariantach postzygotycznych w tkankach niezmienionych 

nowotworowo tej samej kohorty pacjentek z rakiem piersi. Zaobserwowano mnogość tych 

wariantów w normalnych tkankach gruczołu sutkowego u pacjentek z niekorzystnymi 

rokowaniami, które często dotyczyły genów związanych z progresją nowotworu (tj. AKT1, 

PIK3CA, PTEN, TBX3, TP53) (Artykuł IV). Warianty te były związane z gorszym przeżyciem 

pacjentek, zwłaszcza z nawrotem choroby. Te odkrycia podkreślają znaczenie analizy tkanek 

niezmienionych nowotworowo, które zawierają zmiany silnie związane z agresywnymi 

fenotypami raka i gorszymi wynikami przeżycia. 

Wykonane badania były związane z istotnymi wyzwaniami metodologicznymi, w tym 

identyfikacją niezmienionych nowotworowo tkanek poprzez rygorystyczną weryfikację 

histologiczną oraz wykrywaniem wczesnych zmian transkryptomicznych i wariantów 

postzygotycznych o niskiej częstości za pomocą ultraczułych technik sekwencjonowania. 

Włączenie próbek kontrolnych od osób poddanych redukcyjnej mammoplastyce dostarczyło 
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istotnego punktu odniesienia dla rozróżnienia tkanek złośliwych od histologicznie prawidłowych 

tkanek z wczesnymi zmianami molekularnymi. 

Wyniki badań podważają założenie, że markery histologiczne w pełni odzwierciedlają molekularne 

aberracje. Potwierdzają one istnienie „stanu pośredniego,” w którym mikroskopowo prawidłowe 

tkanki zawierają zmiany napędzające inicjację nowotworu i przerzuty. 

Integrując analizy genetyczne i transkryptomiczne z danymi klinicznymi, rozprawa ta oferuje 

kompleksowe zrozumienie, w jaki sposób zmiany molekularne napędzają inicjację nowotworu i 

ryzyko nawrotu. Odkrycia te mają istotne implikacje dla wczesnego wykrywania raka piersi, oceny 

ryzyka nawrotu oraz opracowywania spersonalizowanych strategii leczenia, torując drogę 

przyszłym badaniom mającym na celu poprawę wyników leczenia poprzez wcześniejsze i bardziej 

precyzyjne interwencje terapeutyczne. 

Słowa kluczowe: rak piersi, niezajęty margines, gruczoł sutkowy, zmiany transkryptomiczne, 

warianty postzygotyczne, polimorfizmy pojedynczego nukleotydu, zmiany liczby kopii, 

mozaicyzm somatyczny, śmiertelność, nawrót, złe rokowanie. 
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I.  INTRODUCTION 

1.1. Global Burden of Cancer 

Cancer remains a major global health challenge, accounting for approximately one in six deaths 

worldwide. In 2022, there were around 20 million new cancer cases and 10 million cancer-related 

deaths, underscoring the persistent threat despite significant research advances (Figure 1a). As the 

global population continues to grow and age, the cancer burden is expected to rise, with an 

estimated 35 million new cases projected by 2050—a 75% increase from 2022 levels. This increase 

is driven by lifestyle factors such as sedentary behavior, unhealthy diets, and exposure to harmful 

substances, including tobacco smoke and environmental pollutants. Improved diagnostic 

technologies have also led to higher detection rates, particularly in previously underreported 

regions.  

A small number of cancer types account for the majority of cases and deaths. According to 

GLOBOCAN 2022, the ten most common cancers represented about 64% of all new diagnoses and 

70% of cancer-related deaths globally. Lung cancer, responsible for almost 2.5 million new cases 

(12.4% of all cancers globally), was the most frequently diagnosed, followed by female breast 

cancer (11.6%), colorectal cancer (9.6%), prostate cancer (7.3%), and stomach cancer (4.9%) 

(Figure 1a). The number of new cancer cases is projected to rise to over 35 million by 2050, driven 

by population growth and aging[1]. 

1.2. Breast Cancer Incidence, Mortality, and Risk Factors 

In 2022, breast cancer was the second most common cancer globally, with 2.3 million new cases, 

making up 11.6% of all cancer diagnoses. It was the fourth leading cause of cancer death 

worldwide, with 666,000 fatalities. Among women, breast cancer was the most frequently 

diagnosed and the leading cause of cancer death in 157 countries for incidence and 112 countries 

for mortality, accounting for nearly one in four cancer cases and one in six cancer deaths globally 

(Figure 1b)[1].  
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Figure 1. The pie charts illustrate the proportion of each primary cancer type among all diagnoses and the proportion 

of each cancer type among all cancer-related deaths in 2022 for A: both sexes and B: females. For each sex, the area 

of the pie chart reflects the proportion of the total number of cases or deaths; nonmelanoma skin cancers (excluding 

basal cell carcinoma) are included in the other category. Figure adapted from Bray et al. (2024), CA Cancer J Clin. 

[1]. 
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Both modifiable and non-modifiable factors influence breast cancer risk. Approximately 30% of 

cases are associated with lifestyle factors, such as obesity, physical inactivity, and alcohol 

consumption, which can be mitigated through dietary adjustments, increased physical activity, and 

reduced alcohol intake [2]. Non-modifiable risk factors include age, family history, and genetic 

predisposition. However, the majority of breast cancer cases are classified as sporadic, occurring 

without a known genetic link or family history. Conversely, only 5-10% of cases are hereditary, 

with 25-30% attributable to pathogenic variants in genes like ATM, BRCA1, BRCA2, CHEK2, 

PALB2, PTEN, and TP53 [3–5]. Reproductive factors such as late age at first birth, nulliparity, 

early menarche, and late menopause are also associated with an elevated risk.  

1.3. Breast Cancer Classification and Staging 

Breast cancer is a heterogeneous disease with a variety of histological types and molecular 

subtypes, each with unique clinical presentations, prognoses, and treatment approaches. The two 

most prevalent types are Invasive Ductal Carcinoma (IDC), which originates in the milk ducts and 

spreads to surrounding breast tissue, and Invasive Lobular Carcinoma (ILC), which begins in the 

lobules. Less common invasive forms include Medullary Carcinoma; Mucinous (Colloid) 

Carcinoma, characterized by mucus-producing cells; and Tubular Carcinoma, a less aggressive 

IDC subtype. Papillary Carcinoma, though rare, generally occurs in older women and is often 

associated with a favorable prognosis. Breast cancer can be broadly categorized into non-invasive 

and invasive types. Non-invasive breast cancer, such as Ductal Carcinoma In Situ (DCIS), remains 

confined within the milk ducts, whereas invasive breast cancers like IDC and ILC extend beyond 

their original site [6]. 

Molecular classification based on hormone receptors (estrogen and progesterone) and HER2 status 

has been pivotal in guiding personalized treatment approaches. High-throughput genomics and 

transcriptomics have further elucidated the molecular complexity of breast tumors, leading to the 

identification of four clinically meaningful subtypes: Luminal A, Luminal B, HER2-enriched, and 

Basal-like or Triple-Negative Breast Cancer (TNBC) [7,8]. Accurate staging, based on the 

American Joint Committee on Cancer (AJCC) system, is essential for determining appropriate 

treatment and predicting outcomes, with stages ranging from Stage 0 (DCIS) to Stage IV (distant 

metastases) [9]. 
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1.4. Physiology of the human mammary gland 

Exploring the heterogeneity of breast cancer and its varying prognoses requires a detailed 

knowledge of the normal development and physiology of the mammary gland. The human 

mammary gland is a complex and dynamic organ integral to the female reproductive system. Its 

development undergoes distinct changes during the embryonic stage, puberty, and lactation phases 

(Figure 2).  

Much of what is known about these processes comes from studies using model organisms, 

particularly mice, which offer valuable insights into mammary gland biology and its relevance to 

human breast cancer. Mammary gland development begins during the embryonic stage with the 

formation of bilateral mammary lines at around embryonic day 10.5 (E10.5) in mice. These lines 

develop into mammary placodes by E11.5, which then invaginate to form mammary buds. These 

buds continue to develop into a rudimentary ductal tree, which remains quiescent until puberty. 

During this stage, critical signaling pathways and interactions with the surrounding mesenchyme 

guide the early formation of the mammary gland. At puberty, the mammary gland undergoes 

extensive ductal growth and branching, driven by hormonal signals, particularly estrogen. The 

Terminal End Buds (TEBs) are the key structures involved in this process. These TEBs, located at 

the tips of growing ducts, are responsible for the elongation and bifurcation of ducts into the 

mammary fat pad, leading to the formation of a complex ductal network. The process of ductal 

morphogenesis during puberty establishes the basic architecture of the mammary gland. During 

pregnancy, the mammary gland experiences further development, characterized by the 

proliferation and differentiation of alveolar structures. Under the influence of hormones such as 

progesterone and prolactin, these alveolar units prepare the gland for lactation. The gland 

undergoes significant expansion, forming mature alveoli capable of milk production. This stage is 

crucial for the gland's function in feeding offspring. Following lactation, the gland enters a phase 

of involution, where the alveolar structures regress, and the gland returns to a state similar to the 

pre-pregnant phase, although some changes persist. These developmental stages highlight the 

dynamic nature of the mammary gland. Understanding these processes is essential for grasping the 

underlying mechanisms of mammary gland biology and their implications for breast cancer, 

particularly in identifying the origins of different breast cancer subtypes [10–13]. 
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Figure 2. Diagram of postnatal mammary gland development. A: in the postnatal animal, the early mammary gland 

grows in an allometric fashion and remains relatively dormant until the onset of puberty. At this stage, dramatic 

morphogenesis occurs, largely under the control of Estrogen (E). In the young adult, Progesterone (Pg) regulates 

side-branching, while in pregnancy, the steroid hormones E, Pg, and Prolactin (Prl) exert roles in expansion of the 

alveolar units. In the late stages of pregnancy and during lactation, the peptide hormone Prl plays a key role in 

establishing the secretory state. After lactation, the gland involutes and returns to a resting state. B: representation of 

a terminal end bud in a pubertal mouse mammary gland. Figure reproduced from Fu et al. (2020), Physiol Rev. [10]. 
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1.5. Screening and Treatment 

Early detection and accurate diagnosis of breast cancer are critical for effective management and 

improved survival outcomes. Conventional diagnostic methods, such as mammography, 

ultrasound, and biopsy, remain the cornerstone of breast cancer detection. However, these methods 

are not without limitations. Mammography, for instance, has long been the standard for breast 

cancer screening, yet it is prone to errors due to its reliance on manual interpretation, which can 

lead to variability in identifying and assessing masses. The accuracy of mammography can also be 

affected by the expertise of radiologists and their workload, particularly in resource-limited regions 

where access to specialized training and technology may be restricted. To overcome these 

challenges, recent advancements in genomic biomarkers and deep learning algorithms have 

significantly enhanced diagnostic accuracy and personalized risk assessment. These technologies 

enable more precise identification of cancerous cells and allow for better differentiation between 

benign and malignant tumors, reducing the likelihood of false positives and negatives. Despite 

these technological improvements, the search for even more reliable and non-invasive imaging 

modalities continues. Researchers are actively exploring innovative imaging techniques such as 

microwave imaging, ultrasound tomography, breast tomosynthesis, and contrast-enhanced digital 

mammography. These emerging methods hold the potential to provide more accurate detection by 

improving image resolution and contrast, which are crucial for identifying small or dense breast 

tumors. However, they also present challenges, including high costs, radiation exposure, and 

limited accessibility, which may hinder widespread adoption. Magnetic Resonance Imaging (MRI), 

known for its ability to detect small lesions that mammography might miss, is another tool in the 

diagnostic arsenal. However, MRI's low specificity can lead to overdiagnosis, which may result in 

unnecessary treatments and increased patient anxiety. Positron Emission Tomography (PET) is 

highly effective in visualizing tumor spread and assessing therapy response, yet it requires 

expensive, specialized equipment, making it less accessible, particularly in low-resource settings 

[14,15]. 

As breast cancer screening technology continues to evolve, the development of more accurate, 

cost-effective, and widely accessible methods is imperative. Such advancements will play a crucial 

role in improving early detection rates, thereby reducing the global burden of breast cancer and 

enhancing patient outcomes. In addition to technological innovations, a deeper understanding of 

the seemingly normal mammary gland and the earliest molecular and cellular alterations that 
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precede cancer development is essential. By studying these early changes, researchers can identify 

biomarkers and patterns indicative of the initial stages of cancer, potentially allowing for diagnosis 

before the disease becomes clinically apparent. This proactive approach could revolutionize breast 

cancer screening, enabling interventions at the very onset of malignancy, ultimately improving 

survival rates and reducing the need for more aggressive treatments. 

Breast cancer treatment has severely shifted towards Breast-Conserving Surgery (BCS) over 

mastectomy in recent years, reflecting global trends and advancements in medical care. This 

preference for less invasive options prioritizes both oncological outcomes and aesthetic 

considerations, driven by the integration of improved detection methods, advancements in radiation 

therapy, and a stronger emphasis on shared decision-making between patients and healthcare 

providers. The evolution of treatment approaches has allowed patients to play a more active role in 

their care, as they carefully weigh the benefits and risks of BCS against those of mastectomy. This 

decision-making process is influenced by a range of factors, including the stage and aggressiveness 

of cancer, patient preferences, and the availability of effective adjuvant therapies, such as 

chemotherapy, hormonal therapy, and targeted therapies [16,17]. 

For women at increased risk of breast cancer, particularly those with a strong family history or 

genetic predisposition, Contralateral Prophylactic Mastectomy (CPM) presents a preventive option 

aimed at reducing the risk of developing cancer in the opposite breast. However, CPM is not 

without its challenges; it carries potential psychological and physical implications, making it a 

complex and highly individualized decision. The consideration of CPM must involve a thorough 

evaluation of the patient’s personal risk factors, the psychological impact of living with the fear of 

recurrence, and the potential consequences of surgery on the patient's quality of life. As a result, 

the decision to undergo CPM requires careful deliberation, often involving genetic counseling, 

psychological support, and a detailed discussion of the expected outcomes [18]. 

Breast cancer treatment, now prioritizing breast-conserving surgery, underscores the importance 

of early detection and understanding of initial tissue changes in identifying cancer early, enabling 

less invasive treatments and improving outcomes. 
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II. LITERATURE REVIEW 

2.1. The Origin of Breast Cancer and Cancer Evolution Theories 

Cancer, rather than a static disease, represents a continually evolving entity shaped by complex 

genetic and environmental interactions. At the core of this dynamic process lies Intra-Tumor 

Heterogeneity (ITH) - the diversity of genetic and phenotypic profiles within a single tumor and 

its metastases - which poses a significant challenge for developing universally effective treatments 

[19]. To explain ITH, several theories of cancer origin have emerged, including the Cancer Stem 

Cell (CSC) theory [20] and the Clonal evolution theory [21], each offering unique insights into 

tumor progression. 

The CSC theory suggests that tumors originate from a rare subset of self-renewing cells that can 

differentiate into various CSC and non-CSC subpopulations, contributing to tumor complexity and 

treatment resistance. Initially observed in hematopoietic cancers and later in solid tumors like 

breast and brain cancers, this model depicts CSCs as sitting at the top of a hierarchical tumor 

structure. CSCs divide asymmetrically, generating both new CSCs and non-CSC cells, the latter 

comprising the tumor bulk but contributing less to its growth. CSCs’ resilience is linked to high 

recurrence and therapy resistance, as non-CSCs can revert to CSCs, fueling aggressive tumor 

behavior[22]. 

Conversely, the Clonal evolution theory, proposed by Nowell in 1976, posits that tumors stem from 

a single cell accumulating mutations over time, creating increasingly aggressive and diverse 

subpopulations [23]. Clonal evolution can follow two paths: Linear Evolution (LE), with sequential 

mutation accumulation, and Branched Evolution (BE), where distinct mutations diversify the 

tumor. Although LE is less common in advanced cancers, BE is widely applicable to breast cancer 

and is supported by findings of subclonal driver mutations and convergent evolution, where 

different lineages acquire the same driver mutations, leading to parallel expansions. 

The clonal evolution theory is often associated with the stochastic theory, but the two differ subtly. 

The stochastic theory suggests that any cancer cell can acquire mutations that drive tumor growth, 

emphasizing random mutations over predefined CSCs. Thus, ITH results from random genetic 

variations and environmental influences, affecting treatment responses [24]. Tumor evolution in 

humans, however, is challenging to study due to ethical constraints, so researchers often infer 
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evolutionary history from single time-point samples through phylogenetic methods, though these 

may miss key intermediates [25]. 

Key components in understanding tumor evolution models include the definition of a clone (a 

group of tumor cells sharing a similar genotype and mutational profile) and a subclone (a subset of 

tumor cells that have diverged from the main lineage and acquired additional mutations) [26]. 

Fitness refers to a tumor cell's ability to survive, proliferate, and propagate its genotype within the 

tumor. Driver mutations confer a fitness advantage, increasing the prevalence of certain clones, 

while passenger mutations do not affect fitness. Clonal expansion occurs when a genotype with 

increased fitness becomes more prevalent in the tumor mass, and a selective sweep happens when 

a highly fit genotype outcompetes all other clones [27]. 

Key concepts in tumor evolution include clones (cells sharing a genotype) and subclones (cells 

diverging from the main lineage with additional mutations) [26]. Fitness, the cell's capacity to 

proliferate and spread, is enhanced by driver mutations that increase clone prevalence. Clonal 

expansion occurs when a genotype with increased fitness becomes more prevalent in the tumor 

mass, and a selective sweep happens when a highly fit genotype outcompetes all other clones [27]. 

Next-Generation Sequencing (NGS) techniques, reveal genetic profiles and evolutionary trees, 

highlighting patterns of clonal divergence and subclonal mutations in breast cancer [25]. 

The recently proposed Punctuated Evolution (PE) model diverges from the gradual alteration 

accumulation seen in BE and LE models. Instead, it suggests that significant genomic changes 

occur in short bursts early in tumor development, generating high ITH upfront. Following these 

bursts, dominant clones stabilize, forming most of the tumor mass and contributing to a relatively 

stable structure thereafter. Analogous to the "Punctuated Equilibrium" in species evolution, this 

model implies that tumors may be "pre-programmed" to become aggressive or therapy-resistant 

[28,29]. 

Evidence supporting the PE model has been particularly observed in DNA copy number aberrations 

and chromosomal rearrangements. Early studies, such as those on "firestorms" in breast cancer, 

described localized amplifications on single chromosome arms correlated with aggressive disease 

[30,31]. Similarly, "chromothripsis," involving massive chromosomal rearrangements occurring in 

a single event, has been observed in bone, colorectal, and prostate cancers. These rearrangements 
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result in highly branched phylogenetic trees with few intermediates, supporting the PE model [32–

35]. 

Interestingly, these models of tumor evolution may not be static but can transition over time or 

coexist for different mutation types. LE, though less frequent in advanced cancers, may occur in 

the early stages, transitioning to BE as the tumor grows. In breast cancer, early-stage tumors may 

follow different patterns than advanced ones, with early, rapid bursts of copy number alterations 

stabilizing over time, while point mutations evolve gradually [36]. Single-cell sequencing and 

longitudinal studies suggest that Copy Number Alterations (CNAs) and point mutations follow 

distinct evolutionary paths, further illustrating cancer’s complexity [25]. 

Understanding these tumor evolution principles, especially ITH, is crucial for cancer treatment. 

Each tumor’s unique evolutionary path underscores the importance of personalized medicine. 

Therapies tailored to the molecular profile of each patient’s cancer can better target diverse tumor 

subpopulations, requiring combination therapies to simultaneously target multiple pathways and 

reduce resistance. Adaptive therapy strategies, which continuously monitor tumor changes and 

adjust treatments, are vital for durable responses. 

In conclusion, a comprehensive understanding of cancer’s evolutionary trajectory is essential for 

developing effective treatment strategies. While the clonal evolution theory, with its linear and 

branching models, provides a foundational framework, the cancer stem cell theory and the 

punctuated evolution model introduce additional layers of complexity. These theories emphasize 

the dynamic and heterogeneous nature of tumor progression. The interplay between these models, 

particularly the role of ITH, underscores the need for a nuanced understanding of tumor evolution. 

This knowledge is vital for devising personalized and adaptive therapies that can effectively target 

the diverse subpopulations within a tumor and improve patient outcomes. As our grasp of tumor 

evolution continues to advance, we can anticipate the development of more targeted and effective 

cancer treatments that accommodate the complexity and dynamism of this challenging disease. 

2.2. Evolving Perspectives on Tumor Origins  

The debate over tumor origin has shifted from single-cell models to multifaceted approaches. The 

"cancer field effect" or "field cancerization," first proposed by D.P. Slaughter in 1953, views 

carcinogenesis as a stepwise genetic process, where an initial mutation gives a cell a proliferative 

advantage, creating a field of clonal cells [37]. This concept led to investigations of seemingly 
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normal tissue surrounding lesions, suggesting that these tissues may harbor mutations that, under 

certain conditions, could trigger cancer initiation or recurrence. 

As research has evolved, the focus in breast cancer studies has shifted from the single-cell origin 

model to more nuanced perspectives emphasizing hormonal exposure, tissue microenvironment, 

and gene-environment interactions. Prolonged estrogen exposure, beginning at menarche and 

continuing through menopause, increases susceptibility to breast cancer through mechanisms such 

as DNA damage and cellular stress responses, even in women considered to be at "normal risk" 

[11]. Additional factors, including age, parity, and inherited pathogenic genetic variants—

particularly in the BRCA1 and BRCA2 genes—significantly influence mammary tissue 

composition, with specific changes observed in immune and epithelial cells [38]. The etiologic 

field theory developed more than 60 years after the original concept, further expands on these ideas, 

emphasizing the abnormal tissue microenvironment’s role at all stages of tumor development. This 

theory challenges the notion that markers solely indicate neoplasia, suggesting instead that they 

may reflect broader environmental changes, including contributions from non-transformed cells 

and the extracellular matrix to cancer progression [39]. 

Recent advances reveal that breast cancer may arise from lineage-restricted progenitor cells rather 

than multipotent stem cells, especially during puberty and pregnancy [10]. This suggests that 

specific progenitor cells may drive particular breast cancer subtypes, including aggressive forms 

like triple-negative breast cancer. Targeting these progenitor cells could improve treatment 

outcomes by addressing the unique molecular profiles underlying these subtypes. 

The evolving understanding of cancer - from single-cell to multi-stage, gene-environment models 

- reflects the complexity of tumorigenesis. Insights into progenitor cells and the tumor 

microenvironment are shaping more precise therapies. Continued research is crucial to prevent, 

diagnose, and treat cancer effectively, leveraging an increasingly nuanced understanding of 

cancer’s origins and progression. 

2.3. Premalignant Changes and Transcriptomic Alterations in Cancer-Adjacent Tissues 

Research on cancer initiation increasingly highlights the role of seemingly normal tissues adjacent 

to tumors in early disease development. While studies have traditionally centered on genetic and 

molecular changes within tumors, emerging evidence reveals that histologically normal yet 

genetically altered tissues surrounding tumors may also contribute to cancer progression. 
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Numerous studies identify transcriptomic changes, genetic mutations, and epigenetic alterations in 

nearby mammary gland tissues, suggesting a precancerous state even in non-tumorous cells [40]. 

Challenging the traditional single-cell origin model, Nishimura et al. propose that breast tumors 

often arise from multiple founder cells [41]. This hypothesis is supported by the presence of cancer-

related clones in non-cancerous tissues, indicating that precancerous cells may exist before 

detectable lesions appear. The study emphasizes estrogen's role in mutation accumulation pre-

menopause, as well as the significant contribution of localized microenvironmental and epigenetic 

changes to tumor development. 

Transcriptomic studies further underscore the presence of significant molecular alterations in 

histologically normal tissue adjacent to tumors. Graham et al. found altered gene expression related 

to inflammation, cell cycle regulation, and DNA repair in these tissues, supporting the "field 

cancerization" concept and hinting that such alterations could be early markers of cancer risk [42]. 

Roman-Perez and colleagues identified subtypes in adjacent normal tissues, including an "Active" 

subtype linked to poorer survival in estrogen receptor-positive patients due to TWIST1 

overexpression and claudin-low features [43]. Huang et al., using data from The Cancer Genome 

Atlas, demonstrated that these normal-adjacent tissues provide valuable prognostic insights 

potentially distinct from those of the tumor microenvironment [44]. Similarly, Aran et al. identified 

a unique gene expression signature in adjacent tissues across multiple cancer types, suggesting that 

tumors actively shape their surroundings to support invasion and metastasis [45]. 

Recent studies by Gadaleta et al. and Morla-Barcelo et al. further illuminate molecular changes in 

peritumoral tissues. Gadaleta’s team identified four transcriptomic subtypes in adjacent normal 

tissues that provide prognostic value, while Morla-Barcelo et al. found upregulation of genes 

associated with inflammation, cell cycle, and extracellular matrix remodeling in estrogen receptor-

positive tumors [46,47]. Additionally, Sverchkova et al. investigated immune-related gene 

expression in adjacent tissues, identifying Human Leukocyte Antigens (HLA) genotyping as a 

promising biomarker for immunotherapy stratification, particularly in triple-negative breast cancer 

[48]. Lastly, Lau et al. categorized peri-tumoral samples into clusters based on immune and cellular 

compositions, finding a pro-inflammatory, adipose-enriched cluster linked to poorer survival and 

a myofibroblast and adaptive immune-enriched cluster associated with better outcomes. The study 

suggests that mammographic breast density may influence peri-tumoral subtypes and patient 
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prognosis [49]. Together, these findings underscore the importance of studying cancer-adjacent 

tissues for early cancer detection and risk assessment. Identifying transcriptomic and molecular 

alterations in adjacent tissues offers new avenues for early intervention and tailored surveillance, 

advancing personalized cancer treatment strategies. 

2.4. Copy Number Alterations and Somatic Mutations in the Normal Mammary Gland 

Somatic mosaicism, resulting mainly from post-zygotic mutations, significantly contributes to 

genetic diversity within tissues. These mutations, which include simple nucleotide variants and 

structural changes, are crucial for processes such as immune diversification and neuronal 

complexity. However, they are also linked to diseases like cancer, cardiovascular disease, and 

Alzheimer’s, particularly in aging populations [50]. 

Clonal expansions driven by somatic mutations are prevalent in both cancerous and normal tissues, 

increasing with age and exposure to environmental factors like UV light, smoking, and 

inflammation. Mutated clones accumulate across various organs, remodeling tissues and 

potentially influencing cancer and other diseases, including cardiovascular conditions, autoimmune 

disorders, and infections. Many driver mutations arise early in life but may take decades to lead to 

cancer, highlighting a slow, multi-stage progression to carcinogenesis. Clonal selection 

mechanisms vary between normal and cancerous tissues; for instance, mutations in NOTCH1 can 

suppress tumor growth in the esophagus (Figure 3) [51]. Understanding these clones may aid in 

early diagnosis and prevention, leveraging clonal expansions to manage cancer risks and age-

related diseases. 
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Figure 3. Mutation accumulation and clonal expansion in normal tissues. The patchwork plot shows the spread of 

clones harboring driver mutations in normal tissues. With aging, somatic mutations accumulate in cells, clones with 

driver mutations expand, and tissues undergo remodeling. Exposure to environmental factors, such as UV rays (skin), 

alcohol consumption, and smoking (esophagus), increases the mutation accumulation rate and promotes the expansion 

of mutant clones. Figure reproduced from Maeda and Kakiuchi (2024), Cancer Sci. [51] 

It has been recently proposed that metabolic factors such as obesity and diabetes, along with 

treatments like metformin, significantly impact the expansion of PIK3CA mutant clones in normal 

tissues [52]. Conditions that activate the PI3K-mTOR pathway enhance the competitive fitness of 

these oncogenic mutants, facilitating their clonal expansion even in non-cancerous tissues. 

Conversely, metabolism-modulating interventions like metformin can reduce the fitness advantage 

of these mutants, suggesting potential strategies for cancer prevention by targeting metabolic 

pathways. 

In breast cancer, chromosomal CNAs—including focal deletions, amplifications, and 

aneuploidy—serve as essential biomarkers for diagnosis, treatment planning, and patient 

stratification. These CNAs contribute to cancer heterogeneity and therapy resistance, offering 
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prognostic insights beyond traditional histology. For example, amplification of chromosome arm 

1q is particularly valuable for prognosis in TNBC [53]. 

Significantly, structural genetic aberrations are found not only in tumor tissues but also in cancer-

free breast tissues of patients with sporadic breast cancer, affecting nearly 40% of cases. 

Aberrations like ERBB2 gene gains observed far from primary tumors suggest a widespread and 

progressive field cancerization process, supporting the idea that genetically altered cells can 

precede tumor formation [50]. 

Additionally, approximately 10% of uninvolved glandular tissue cells from breast cancer patients 

display CNAs, indicating a predisposition to genomic instability that may contribute to early cancer 

initiation. This finding has profound implications for early detection and risk management, 

especially regarding radiotherapy [54]. Pereira et al. emphasize the importance of integrating CNA 

profiling with gene mutation analysis for breast cancer classification, identifying several mutation-

driver genes relevant to targeted therapy, such as FOXO3 and AGTR2 [55]. 

Recent research has expanded our knowledge of breast cancer mutations. For instance, Nik-Zainal 

et al. sequenced whole genomes from 560 breast cancers and identified millions of base 

substitutions, small indels, and genomic rearrangements, underscoring the need for continued 

exploration of cancer’s genomic landscape [56]. In another study, Li et al. reported frequent 

somatic TP53-PIK3CA co-mutations in Chinese breast cancer patients, correlating with poorer 

survival [57]. 

Oh and Sung (2020) found that somatic mutations, including those in PIK3CA, also appear in 

histologically normal tissues near cancerous areas. Often matching mutations in the adjacent 

tumors, these findings suggest that nearby "normal" tissues may harbor early tumorigenic events 

[58]. 

Advances in mutation detection have further revealed modest variation in somatic mutation rates 

across cell types, indicating that division-independent mutational processes may play significant 

roles in somatic mutation [59]. A study from Hungary observed frequent mutations in TP53, 

PIK3CA, and KMT2C, reinforcing their significance in breast cancer [60]. 

In recent work, Rockweiler et al. (2023) utilized a multi-tissue atlas to examine post-zygotic 

mutations across 54 tissue types from 948 donors. Their study shows that mutations vary 
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significantly across tissues and are influenced by age and tissue type, with prenatal mutations often 

being more deleterious. This research sheds light on the potential for using post-zygotic mutations 

in diagnostics, particularly for cancer risk assessment [61]. 

2.5. Clinical Implications and Limitations 

The discovery of early molecular changes—including transcriptomic alterations, pathogenic point 

mutations, and chromosomal CNAs—in normal tissues adjacent to tumors holds considerable 

potential for advancing cancer diagnosis, risk assessment, and personalized treatment strategies. 

By identifying these early alterations, researchers hope to achieve more precise patient 

stratification and to develop targeted therapies that improve patient outcomes. However, the 

clinical application of these findings faces several challenges. Small cohort sizes, patient 

heterogeneity, and inconsistent definitions of "normal" tissue affect the robustness and 

generalization of results. Furthermore, a lack of healthy control samples and reliance on 

mastectomy-derived tissue samples limit the applicability of these insights. The variability in 

detection methods and the risk of tumor contamination further complicate data interpretation. 

Addressing these issues will be essential for realizing the clinical potential of early molecular 

alterations in improving cancer care. 

2.6. Challenges in Defining and Controlling Histologically Normal Tissue in Breast 

Cancer Research 

Studying adjacent normal tissue holds great promise, yet several challenges must be resolved. 

Defining "histologically normal" mammary tissue accurately is one of the primary hurdles. To 

ensure samples are uncontaminated by tumor cells, researchers must adhere to meticulous 

protocols, selecting samples from regions distant from the primary tumor and, ideally, from 

separate breast lobes. Independent pathologists should evaluate these samples to confirm their 

normalcy. Terms such as "uninvolved margin (UM)" or "uninvolved tissue" are commonly used to 

describe non-tumorous tissue with no visible cancer signs [50,54]. 

Selecting suitable control samples poses additional complexities. Ideally, controls would consist 

of individuals without a personal or familial cancer history, but achieving age-matching is 

challenging since younger patients typically undergo cosmetic surgeries rather than cancer 

treatments. Tissue from reduction or prophylactic mastectomies can be used as controls, but these 

may not always be completely free of cancer risk. Breast cancer is relatively uncommon in younger 
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women, with only one in eight invasive cases diagnosed in women under 45[62]. Moreover, breast 

cancer's high lifetime incidence—approximately 13% of women will develop the disease—

complicates efforts to identify truly "healthy" control samples [62,63]. 
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III. AIMS 

To investigate the molecular mechanisms underlying breast cancer development and progression, 

this doctoral research addresses critical gaps in sample collection, detection methodologies, and 

molecular profiling. The overarching objective is to advance the understanding of early 

molecular alterations, their prevalence, and their clinical relevance in reportedly sporadic 

breast cancer. This study employs a multi-faceted approach: first, the establishment of unique and 

comprehensive biobanking protocols (Aim I); second, genetic analyses of histologically verified, 

non-tumorous mammary tissues from breast cancer patients, with the inclusion of control samples 

from mammoplasty patients (Aim II). Furthermore, transcriptomic and genetic investigations were 

conducted in histologically verified, non-tumorous mammary tissues from breast cancer patients 

with adverse outcomes, incorporating comparisons with breast cancer patients recruited without 

any criteria related to prognosis and control samples, to assess the clinical implications of these 

findings (Aims III and IV). 

Aim I of this work (Paper I, Filipowicz N. et al.) laid the foundation by developing a 

comprehensive biobank of histologically controlled, non-tumorous mammary gland samples 

collected from various distances from primary lesions. The biobanking protocols, which also 

included tumor, blood, and skin samples, were designed to mitigate challenges related to small 

cohort sizes, patient heterogeneity, and the difficulty of defining histologically normal tissue. These 

carefully curated samples are pivotal to ensuring the reliability and quality of "omics" studies in 

cancer research. 

Building upon this resource, Aim II (Paper II, Kostecka A. et al.) employed ultra-high sensitivity 

techniques to identify subtle molecular changes, such as structural rearrangements and pathogenic 

post-zygotic genetic variants, in breast cancer-related genes within the normal mammary glands 

of sporadic cancer patients. This study addresses limitations in current detection methods, offering 

insights into early molecular alterations that may precede tumor formation. 

In Aim III (Paper III, Andreou M. &  Jąkalski M. et al.), transcriptomic profiling of histologically 

controlled non-tumorous tissues and primary tumors was performed, with a focus on patients with 

adverse outcomes. Using a custom gene panel targeting genes associated with breast cancer 

dissemination and metastasis, this study assessed the clinical relevance of transcriptomic 
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alterations in non-tumorous tissues by comparing patient samples with those from individuals 

undergoing reduction mammoplasty. This analysis also aimed to address issues of sample 

contamination and improve the selection of appropriate controls for breast cancer research. 

Finally, Aim IV (unpublished findings, manuscript under review) investigated the prevalence of 

post-zygotic and germline variants in paired histologically controlled non-tumorous mammary 

tissues and primary tumors from sporadic breast cancer patients with adverse outcomes, as well as 

from patients without prognosis-specific criteria and control individuals. This study aimed to 

evaluate the correlation of pathogenic post-zygotic variants with clinical outcomes, such as 

recurrence and mortality, contributing to improved patient stratification and treatment 

strategies based on genomic alterations. 

Together, this research addresses complementary aspects of somatic mosaicism, molecular 

alterations, and patient outcomes, providing a robust framework for advancing breast cancer 

research and refining clinical approaches to diagnosis and treatment. 
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IV. MATERIALS AND METHODS 

4.1. Cohorts: Patient Selection and Samples Studied 

Access to well-characterized, histologically validated non-tumorous samples, reference tissues 

(e.g., blood or skin), and control samples, combined with comprehensive clinical follow-up 

information, is crucial for investigating the oncogenic potential of seemingly normal tissues. Given 

the diversity of the research papers discussed in this thesis, multiple cohorts were indispensable. 

The primary cohorts analyzed are described below: 

4.1.1. Biobank (Paper I) 

This biobank encompasses samples from five cancer types known for high incidence and/or often 

fatal outcomes: breast (933 donors), colorectal (383 donors), prostate (221 donors), bladder (81 

donors), and exocrine pancreas carcinomas (15 donors), as well as metachronic metastases of 

colorectal cancer to the liver (14 donors). Additionally, samples from 64 healthy male donors were 

included in studies on the Loss Of the Y chromosome (LOY). The recruitment took place across 

five clinical centers in Poland: the Oncology Center in Bydgoszcz, the National Institute of 

Oncology in Cracow, the University Clinical Centre in Gdańsk, the University Hospital in Cracow, 

and Specialist Hospital in Koscierzyna. Sample collection was approved by the Independent 

Bioethics Committee for Research at the Medical University of Gdańsk, and written informed 

consent was obtained from all participants. Stringent inclusion criteria were enforced, especially 

for breast cancer patients undergoing mastectomy or BCS, who were required to be free from 

neoadjuvant therapy. The biobank at the end of 202, after two years of collecting, included 1,711 

patients and controls, totaling 23,226 samples. On average, 74 donors and 1,010 samples were 

added monthly over nearly two years. Notably, 40% of samples are from macroscopically healthy 

cancer-adjacent tissues, and 12% are from tumors, adding significant value for studies on cancer 

predisposition. 

Sample collection protocols were designed through collaboration among molecular teams, 

surgeons, and pathologists. For each diagnosis, the standard sample set included 1-2 Primary 

Tumor fragments (PT), 1-12 UM specimens from various distances from the PT, 1-4 Whole Blood 

(WB) samples (1.5 ml each), and 1-2 blood Plasma (BP) samples (1-1.5 ml each) for future 

proteomic studies. Each tissue fragment was split into two parts: one is fresh-frozen at -80°C, and 

the other is fixed in formalin, embedded in paraffin, and processed for  Hematoxylin and Eosin 
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(H&E) staining. For breast and colorectal cancers, local lymph node metastases were also collected 

if identifiable. Each sample is verified with histopathological reports. Additionally, uninvolved 

margin and skin samples are collected to establish organoids and primary cell cultures. 

4.1.2. Breast Cancer Patients Diagnosed with Sporadic Breast Cancer (Paper II) 

This cohort includes 52 patients diagnosed with sporadic breast cancer who did not receive 

neoadjuvant therapy. The focus was on patients undergoing breast-conserving surgery (BCS), who 

constituted two-thirds of the cohort. A total of 204 samples were collected, including UM, PT, Skin 

(SK), and Peripheral Blood (BL), from the Oncology Centre in Bydgoszcz and the University 

Clinical Centre in Gdańsk, with the approval of the bioethics committee at the Medical University 

of Gdańsk (MUG). Written informed consent was obtained from all participants. The histological 

subtypes and tumor tissue content of each PT sample were evaluated by pathologists according to 

the respective AJCC guidelines [9], and tumor samples with less than 50% neoplastic cell content 

were excluded. The normal mammary gland was sampled from the opposite quadrant relative to 

the primary tumor site, maintaining a mandatory distance of at least 3 cm to exclude potential 

contamination by residual tumor cells. Pathologists also evaluated these tissue samples to confirm 

normal histology. All normal mammary gland samples from patients who underwent breast-

conserving surgery were derived from the tissue that remained intact after the surgery.  

4.1.3. Reportedly Sporadic Breast Cancer Patients Selected Based on Unfavorable Prognosis 

(Papers III and IV) 

Breast cancer patients with unfavorable outcomes and extensive clinical follow-up data collected 

for up to 10 years post-surgery were recruited as part of a large biobanking effort between 2012 

and 2018 (n=497). Criteria included disease recurrence, additional tumors, and/or death. None of 

the recruited individuals received neoadjuvant therapy, and all breast cancer cases were reported 

as sporadic. Samples collected included PT, UM (both distal [UMD, 1.5–5 cm] and proximal 

[UMP, at least 1 cm away from PT]), and SK, from the Oncology Centre in Bydgoszcz. These 

samples were stored at −80°C, and tumor presence and normal histology of uninvolved margins 

and skin samples were confirmed microscopically. Histological subtypes were assessed according 

to AJCC guidelines [9,64]. 
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4.1.3.1. Transcriptome Study (Paper III) 

This study focused on 83 breast cancer patients with unfavorable outcomes. Most patients 

underwent BCS (n=68), with fewer undergoing mastectomy (n=13). A total of 242 samples, 

including PT, UMD, and UMP, were analyzed after excluding outliers. Samples from two distinct 

tumor sites (PT1 and PT2) were included for two patients with multifocal primary tumors. 

4.1.3.2. Variant Study (unpublished findings, manuscript under review) 

The cohort for this study consisted of 77 breast cancer patients with unfavorable outcomes, 

primarily undergoing BCS (n=63) (Breast Cancer Adverse Prognoses cohort, BCAP cohort). A 

total of 231 samples, including matched PT, UMP (referred to as UM), and SK, were analyzed, 

with some UM samples taken at a further distance from the PT (UMD) included in later analyses. 

SK samples, as blood samples were unavailable, served as references to differentiate between post-

zygotic and germline variants due to the unavailability of blood samples. 

The cohorts for the Transcriptome Study (Paper III) and the Variant Study (unpublished findings, 

manuscript under review) partially overlapped, collectively including a total of 83 breast cancer 

patients with unfavorable prognoses. These patients were analyzed across the two studies to 

investigate distinct molecular aspects of breast cancer progression. 

4.1.4. Reportedly Sporadic Breast Cancer Patients Selected Without Prognosis Criteria 

(unpublished findings, manuscript under review) 

The BCUS (Breast Cancer Un-Selected) cohort comprised 49 sporadic breast cancer patients 

recruited without specific prognosis-related criteria, representing 5.25% of the total 933 breast 

cancer donors in the biobank. Most patients underwent BCS (n=31) rather than mastectomy (n=18). 

Among these 49 patients, 5 experienced recurrences, and 3 died within two years post-surgery; 

however, the follow-up period for this cohort (approximately 2 years) was considerably shorter 

than that of the breast cancer patients with adverse outcomes. A total of 147 samples, including 

PT, UM, and BL, were analyzed. UM samples were collected at least 1 cm away from the PT, and 

their normal histology was confirmed by two independent pathologists. 

4.1.5. Control Patients 

Paper II: Normal mammary gland samples from 26 age-matched women undergoing breast 

reduction surgery, with no history of cancer, served as controls. Histological evaluations confirmed 

tissue normalcy by two independent pathologists. 
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Paper III: Fifty-three individuals undergoing breast reduction surgery, with no personal or familial 

history of cancer, served as controls (CTRL). Samples were collected at the Karolinska Institute 

and the University Clinical Centre in Gdańsk, and histology was confirmed by dedicated 

pathologists. 

Unpublished findings (manuscript under review): Fifteen individuals undergoing breast reduction 

surgery, with no personal or familial history of cancer, formed the Reduction Mammoplasty (RM) 

cohort and served as controls. Paired normal UM and BL samples were collected at the University 

Clinical Centre in Gdańsk, with histological evaluations confirming tissue normalcy. 

4.2. Technologies 

4.2.1. SNP Arrays (Paper II) 

Single Nucleotide Polymorphism (SNP) arrays, developed in the 1990s, are used for genotyping 

and detecting genetic variations, including SNPs and Copy Number Variations (CNVs) across the 

genome. DNA is fragmented and labeled with fluorescent dyes before being hybridized onto a chip 

with probes designed for specific SNP sites. Post-hybridization, the chip is scanned to collect 

fluorescence intensity data, which is then analyzed to determine SNP genotypes. The intensity of 

the signal also helps identify CNVs, indicating heterozygous or homozygous alleles. SNP arrays 

are valued for their high-throughput, cost-effective, and reliable nature in genetic research [65]. In 

Paper II, SNP arrays identified recurrent genetic aberrations in paired PT and UM samples from 

breast cancer patients, as well as normal mammary tissue from age-matched controls.  

4.2.2. Targeted DNA Sequencing (Paper II). 

Although SNP arrays focus on the most common genetic variants, they capture only a small, 

preselected subset of all potential variations. Targeted DNA sequencing focuses on specific regions 

of the genome, such as genes or loci known to be involved in diseases, making it an efficient 

method for identifying relevant genetic variations. This technique involves using capture probes or 

primers to selectively enrich and amplify targeted genomic regions before sequencing. It provides 

higher depth of sequencing and sensitivity compared to whole genome sequencing, detecting low-

frequency alterations and somatic variants with greater accuracy. This approach is particularly 

useful for studying genes with known disease associations, enabling rapid and accurate genetic 

analysis for diagnostic, prognostic, and therapeutic purposes [66,67]. In Paper II, targeted DNA 
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sequencing was employed to identify post-zygotic and germline variants in UM, BL, and PT 

samples from sporadic breast cancer patients.  

4.2.3. Targeted RNA Sequencing (Paper III) 

Targeted RNA Sequencing (RNA-seq) involves selectively sequencing specific RNA transcripts 

of interest rather than the entire transcriptome. This method uses capture probes or primers to enrich 

and amplify targeted RNA regions before sequencing. Total RNA or Messenger RNA (mRNA) is 

reverse-transcribed into Complementary DNA (cDNA), which is then enriched for specific genes 

and sequenced. This approach allows for high sensitivity in detecting low-abundance transcripts 

and rare isoforms, while also being cost-effective and reducing computational demands compared 

to whole transcriptome sequencing. Targeted RNA-seq is especially useful for studying gene 

expression and transcript variants associated with specific diseases or biological processes. 

However, because it concentrates on a predefined set of genes, targeted RNA-seq may introduce 

bias and potentially overlook important transcripts outside the target regions, limiting the discovery 

of novel transcripts and alternative splicing events [68,69]. In Paper III, a customized RNA panel 

was used to differentiate malignant from non-malignant breast samples and to identify a pre-

tumorous state in normal mammary gland tissue. 

4.2.4. Whole Exome Sequencing (WES) (unpublished findings, manuscript under review) 

Targeted DNA sequencing is an efficient and cost-effective method for investigating genetic 

alterations, but it is limited to specific regions of the genome rather than covering the entire set of 

coding regions. In contrast, Whole Exome Sequencing (WES) targets the coding regions of the 

genome, focusing on exons where many disease-causing variants are found. DNA is fragmented, 

hybridized with probes specific to exonic regions, and sequenced to generate millions of short 

reads. These reads are aligned to a reference genome, and variants are identified and filtered to 

differentiate between germline and somatic origins. Variants are then annotated to assess their 

functional impact and relevance to disease, with comparisons made to genetic databases for 

interpretation. WES is cost-effective compared to whole genome sequencing and provides valuable 

insights into genetic disorders, potential therapeutic targets, and disease mechanisms. However, by 

focusing on exonic regions, WES may miss structural variants, large deletions, or duplications. 

Additionally, sophisticated bioinformatics tools are required for accurate variant calling and 
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interpretation, which can complicate data analysis [70,71]. Here, WES detected pathogenic 

germline and low-frequency post-zygotic variants in UM samples from breast cancer patients.  

4.2.5. Duplex Sequencing (Papers II and unpublished findings, manuscript under review) 

WES provides a comprehensive view of the protein-coding regions of the genome and is a cost-

effective approach. However, it may miss low-frequency mutations due to higher error rates and 

the lack of strand-specific error correction, often requiring follow-up studies to verify rare variants. 

Duplex sequencing is an advanced method that reduces sequencing errors by independently 

analyzing both original DNA strands. DNA fragments are tagged with Unique Molecular 

Identifiers (UMIs) at both ends. These tagged fragments are sequenced, and reads are paired based 

on UMIs to create consensus sequences for each strand. This method enhances error correction and 

improves variant detection, particularly for rare mutations and low-frequency variants. Duplex 

sequencing is especially valuable in cancer research for detecting low-frequency somatic variants. 

Nevertheless, the technique is more complex and costly due to the additional steps of adapter 

ligation, high-depth paired-end sequencing, and the need for sophisticated bioinformatics for error 

correction [72,73]. In Paper II and the manuscript under review (unpublished findings), duplex 

sequencing was employed to identify low-level subclonal variants in selected genes. 

4.3. Challenges and Solutions 

Exploring the oncogenic potential of seemingly normal mammary gland tissue from breast cancer 

patients across multiple patient cohorts and control groups involves several significant challenges. 

These challenges affect the validity and reliability of the findings and include variability in sample 

collection protocols, the need for robust and age-matched control cohorts, and the sensitivity of the 

utilized methods. This section discusses these challenges and the methodological solutions 

implemented to address them, thereby enhancing the rigor and clarity of the studies. 

4.3.1. Different Sample Collection Protocols 

Breast cancer patients were also recruited using various protocols established prior to the 

biobanking project, leading to differences in the collection of uninvolved mammary gland samples. 

These protocols varied in terms of the distances from the primary tumor at which samples were 

obtained, resulting in a diverse array of tissue samples. This variability introduces complexity into 

the analysis, as different sampling distances can affect the interpretation of results. To mitigate this 

issue, we provided detailed explanations and illustrations of these differences in the “Cohorts: 
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Patient Selection and Samples Studied” section and in each publication. Despite this variability, 

the diversity in sampling distances might enhance the robustness of our findings, as alterations in 

transcriptomic profiles and genetic variants were observed not only in cancer-adjacent tissue (1 

cm) but also at greater distances from the primary lesions (Papers II and III, and manuscript under 

review). This broader sampling range helps capture a more comprehensive picture of potential 

oncogenic changes. 

4.3.2. Necessity for Robust, Age-Matched Control Cohorts 

Controls for our studies were individuals without a personal or familial history of cancer. However, 

these control individuals were not always age-matched with the breast cancer patients (Paper III 

and manuscript under review). Age-matching controls are challenging because individuals opting 

for cosmetic surgical procedures, who usually serve as controls, are typically younger. Breast 

cancer diagnosis is relatively rare in younger women, with only about one in eight invasive breast 

cancers diagnosed in women under the age of 45 [62]. Furthermore, recruiting healthy controls is 

complicated by the high lifetime risk of breast cancer, with approximately 13% of women expected 

to develop the disease, and the exact onset of carcinogenesis remaining uncertain [62,63]. 

Therefore, in Papers II and III, and the manuscript under review, normal mammary glands were 

sampled from individuals without cancer history undergoing plastic surgery, providing the most 

appropriate available control samples from a biological perspective. 

4.3.3. Effectiveness and Sensitivity of Utilized Methods 

To investigate transcriptomic alterations among UM, PT, and CTRL samples, a custom RNA 

sequencing panel comprising 634 genes associated with breast cancer and related processes such 

as epithelial-to-mesenchymal transition, cell death, and apoptosis was employed in Paper III. This 

panel also included genes from the AIMS and PAM50 predictors (74,75), which classify breast 

tumors into molecular subtypes. Using a gene panel focused on a predefined set of genes introduces 

potential bias and may not capture the complete transcriptomic landscape. This limitation could 

result in missing important pathways involved in the disease. To address this issue, we validated 

the custom RNA sequencing panel’s effectiveness by comparing it to external datasets of full 

transcriptome and custom RNA-seq panel data from the same cohort of 18 breast cancer patients, 

collected and processed similarly to the main dataset. This benchmarking confirmed the panel's 
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ability to capture critical transcriptomic information, ensuring it consistently produces valid results 

across different breast cancer samples. 

Targeted DNA sequencing (Paper II) and WES (manuscript under review) were initially used to 

identify post-zygotic variants in paired UM and PT samples from breast cancer patients, as well as 

UM samples from control individuals. BL or SK samples were used as reference samples to 

differentiate between post-zygotic and germline variants. However, detecting low-frequency 

variants in heterogeneous UM and PT samples with standard NGS methods presents challenges 

due to sequencing depths (typically 100-200x for WES or 500-1000x for targeted DNA 

sequencing) and the inherent error rates of these technologies (approximately 0.1-1%). This can 

lead to false positives and complicate the identification of true low-frequency variants [66,74]. 

To address these challenges, selected variant cases were validated using independent methods such 

as Sanger sequencing and High-Resolution Melting (HRM). Sanger sequencing, or dideoxy 

sequencing, is known for its accuracy and is suitable for sequencing individual genes and validating 

variants. It involves DNA synthesis with chain-terminating dideoxynucleotides, resulting in 

fragments of varying lengths that are separated by capillary electrophoresis and identified based 

on fluorescence emission [75]. While Sanger sequencing is renowned for its precision, it is 

relatively slow and labor-intensive compared to modern high-throughput sequencing methods. 

Moreover, its sensitivity is limited: detecting variants with a Variant Allele Frequency (VAF) of 

less than 10% is challenging, and identifying variants with a VAF of less than 5% is virtually 

impossible. HRM is a post-PCR technique that identifies variations based on DNA melting 

behavior, offering high sensitivity and cost-effectiveness. Differences in DNA sequences cause 

variations in melting temperature (Tm), which are detected by the HRM analysis, allowing for the 

identification of mutations, polymorphisms, and epigenetic differences. HRM is advantageous due 

to its high sensitivity, specificity, and cost-effectiveness, as well as its ability to analyze multiple 

samples quickly without the need for labeled probes [76]. However, HRM is an indirect method 

and requires high-quality DNA and expertise to interpret the results accurately. 

To further address these challenges duplex sequencing (Papers II and manuscript under review) 

was employed. This ultra-deep sequencing approach significantly increases coverage (up to 

thousands of times), enhancing sensitivity for detecting low-frequency variants. Duplex 

sequencing reduces sequencing errors by independently tracking both original strands of the DNA 
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molecule. True variants will appear on both strands, allowing for accurate differentiation from 

sequencing errors [72,73]. Duplex sequencing confirmed the presence of previously identified low-

frequency pathogenic variants and revealed new extremely low-frequency pathogenic variants in 

UM samples. 

V. SUMMARIES OF PUBLICATIONS 

5.1. Paper I – Filipowicz et al. 

5.1.1. Introduction 

Combining multiple samples from a large number of distinct patients and control individuals, along 

with comprehensive, long-term clinical follow-up data, can significantly improve translational 

research. More than 90% of cancer cases are not attributed to inherited genetic alterations; instead, 

the accumulation of post-zygotic variants occurring after fertilization has been hypothesized to 

contribute to cancer predisposition [77–79]. Additionally, the mosaic loss of chromosome Y in the 

leukocytes of aging men—representing the most common post-zygotic variant in blood samples—

is associated with earlier mortality and morbidity, including multiple cancer diagnoses [80–83]. 

The collection of histologically controlled non-tumorous tissues and blood samples, in addition to 

tumor samples from patients and unrelated healthy individuals, is crucial for genetic and proteomic 

analyses. This publication outlines the development of a specialized biobank designed to support 

cancer research by providing high-quality human tissue and blood samples, along with detailed 

patient questionnaires for comprehensive data. This biobanking effort aims to systematically 

explore the contribution of post-zygotic genetic variations in normal tissues to cancer 

predisposition. 

5.1.2. Results and Discussion 

Samples were collected from patients with breast, colorectal, prostate, bladder, and pancreatic 

cancers, as well as healthy male controls for loss-of-chromosome-Y studies. Recruitment occurred 

across five clinical centers over nearly two years, resulting in 1,711 donors and 23,226 samples. 

Breast carcinoma was the predominant diagnosis, with 933 donors treated either with mastectomy 

or breast-conserving surgery, and detailed demographic and clinical information was collected. A 

substantial portion of samples came from normal tissue margins at various distances from the 

corresponding primary tumors, providing a unique resource for cancer research. The collection 

process, involving detailed pathology and histopathology, required about 2,800 working hours. 
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Standardized protocols ensured the quality and reliability of these samples, which are essential for 

reproducible and accurate genetic studies. By offering a rich repository of biological materials, the 

biobank aims to facilitate the identification of new biomarkers and therapeutic targets, ultimately 

advancing personalized cancer treatment and improving patient outcomes. Dedicated software 

(MABData1 and MABData2) was designed and implemented to support the decentralized 

biobanking approach, allowing efficient data management and ensuring compliance with data 

safety standards. This resource supports diverse "omics" studies and has the potential to enhance 

the understanding of genetic variations involved in cancer predisposition. 

5.2. Paper II – Kostecka A. et al. 

5.2.1. Introduction 

Breast cancer, which affects 24% of women globally and is a leading cause of cancer-related female 

deaths, mostly arises without inherited mutations in high-penetrance genes like BRCA1 or BRCA2 

(85-90% of cases) [3,4,84]. High-throughput genomics has classified breast cancer into four 

subtypes and identified somatic driver mutations in key genes such as PIK3CA and TP53 

[7,8,32,55,56]. Traditionally, these mutations were studied in tumors, overlooking the mutational 

landscape in normal mammary tissue, which is hormonally stimulated and prone to DNA damage 

[11,85–87]. This study screened for subclonal somatic pathogenic alterations in the normal 

mammary gland tissue of sporadic cancer patients, particularly post-BCS. The findings reveal 

frequent structural chromosomal aberrations and pathogenic point variants in crucial breast cancer 

genes in the histologically normal tissue left after BCS. These genetic alterations in preserved 

normal tissue suggest a link with recurrence risk and implications for future treatment, highlighting 

the need for thorough genetic screening in breast cancer management. 

5.2.2. Results and Discussion 

A total of 204 UM, PT, SK, and BL samples were collected from 52 reportedly sporadic breast 

cancer patients, treated mostly with BCS. Normal mammary gland samples were also collected 

from 26 age-matched control individuals undergoing breast reduction surgeries. SNP arrays were 

implemented to analyze chromosomal rearrangements and to detect DNA CNAs and Loss Of 

Heterozygosity (LOH). Hierarchical clustering revealed distinct PT-only and control-only clusters, 

with PTs exhibiting significant differences in CNAs (Wilcoxon test, p = 0.0094). Surprisingly, 

control samples showed greater heterogeneity. Recurrent chromosomal aberrations, such as losses 
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at 1p, 16p11.2, and 9p21.3, and gains at 3q25.3, 4q13.1, 8q, and 20q, were identified in UMs. LOH 

at chromosome 8p, associated with poor breast cancer outcomes [88], was present in UMs, PTs, 

and controls. ERBB2 gains were detected exclusively in PTs, except in one control sample. 

Targeted DNA sequencing of UM, BL, and PT samples from breast cancer patients found 

heterozygous constitutional pathogenic variants in 7.7% (4/52) of cases. After excluding 

individuals with germline pathogenic variants, the analysis focused on 48 sporadic breast cancer 

patients, identifying 15 somatic pathogenic variants in the normal mammary gland tissue of 19% 

(9/48) of patients. These variants affected genes related to tumor suppression, oncogenesis, cell 

death regulation, DNA repair, translation, gene expression, and chromatin remodeling. Ultra-deep 

duplex sequencing was implemented to enhance the sensitivity and accuracy of rare variant 

detection. PIK3CA and TP53 were prominent driver genes, with 6 hotspot PIK3CA variants and 7 

hotspot TP53 variants in total, revealed either with targeted DNA sequencing or duplex sequencing. 

PIK3CA and TP53 variants, prevalent in tumors [7,35], were detected at lower levels in normal 

tissue, suggesting potential secondary tumor sites. These findings underscore the importance of 

profiling normal tissue to elucidate disease origins, potentially enhancing treatment and clinical 

management. The study advocates for genetic and clinical surveillance of sporadic breast cancer 

patients post-surgery to improve personalized care. 

5.3. Paper III – Andreou M. &  Jąkalski M. et al. 

5.3.1. Introduction 

Breast cancer is a major health issue, ranking as the most common cancer globally in 2020, with 

2.26 million cases, surpassing lung cancer incidence [89,90]. Enhanced mammographic screening 

and extensive educational efforts have facilitated early detection, aiding in the identification of 

breast carcinomas during asymptomatic phases. BCS is favored for its tissue preservation benefits, 

yet recurrence rates post-surgery remain substantial, implicating residual disease or alterations in 

unexcised mammary gland tissue [16,17,91]. Current therapeutic decisions rely on tumor and 

resection margin analyses, but emerging research underscores the prognostic potential of normal 

tissue [40,50,54,92]. Unlike prior studies focusing on cancerous tissues of patients selected without 

any criteria related to prognoses [42,45,46], this study aimed to investigate the transcriptomic 

landscape of uninvolved mammary gland tissue at various distances from the primary lesion in 

patients with adverse prognoses. Distinct gene expression patterns distinguish malignant from non-

malignant tissues, and a potentially pre-tumorigenic environment emerges in apparently normal 



43 

 

tissue, associating with smaller tumors and poorer outcomes. The study underscores the 

significance of incorporating normal tissue analysis into breast cancer research for improved 

prognostication and therapeutic strategies. 

5.3.2. Results and Discussion 

The transcriptomic profiles of 242 PT and UM samples collected proximal (UMP) and distal 

(UMD) to the PT from 83 breast cancer patients who experienced unfavorable outcomes were 

analyzed. Patients included suffered from disease recurrence and/or the presence of a second, 

independent tumor and/or succumbed to the disease within 10 years post-original surgery. CTRL 

samples from 53 individuals undergoing reduction mammoplasty surgeries without a history of 

cancer were used as a reference group. Two independent pathologists examined tissue samples to 

identify cancerous areas in PT samples and confirm the normal histology of UMs and CTRLs. A 

custom panel comprising 634 genes associated with breast cancer progression and metastasis was 

utilized for expression profiling. The custom RNA-sequencing panel's ability to capture 

comprehensive information representative of the entire mammary tissue was validated using 

external datasets from 18 breast cancer patients. The results highlight a clear distinction between 

malignant (PT) and non-malignant (UMP, UMD, CTRL) tissues through Principal Component 

Analysis (PCA), revealing significant differences in expression profiles. Differential expression 

analysis showed the largest deregulation of genes when comparing PT to all non-malignant tissues, 

with fewer Differentially Expressed Genes (DEGs) when PTs were compared with controls or UMs 

separately. Functional annotation of DEGs linked to cancer-related pathways indicated aggressive 

tumor profiles and poor outcomes. PCA further revealed heterogeneity within non-malignant 

samples, with a subset of UMs forming a distinct group. AIMS and PAM50 gene expression-based 

classifiers, originally developed and used on full-blown tumors, corroborated the histopathological 

evaluation for all CTRL samples, while some UMs exhibited tumor-like features according to 

PAM50. Hierarchical clustering revealed four distinct clusters, with Cluster 4, enriched with UMs, 

exhibiting unique attributes and a down-regulated gene signature. This signature, named KAOS 

(for Keratins-Adhesion-Oncogenes-Suppresors), featured key cellular components encoding 

keratins, CDH1, CDH3, and EPCAM cell adhesion proteins, matrix metallopeptidases, oncogenes, 

tumor suppressors, along with crucial genes (FOXA1, RAB25, NRG1, SPDEF, TRIM29, and 

GABRP) having dual roles in cancer. Furthermore, Cluster 4 was significantly associated with 

clinical outcomes, showing smaller tumor sizes (p=0.033, Mann-Whitney U test), higher age 
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(p=0.025, Mann-Whitney U test), HER2-positive status (p=0.004265, Fisher’s test), and a higher 

death status (p=0.04493345 and p=0.01512627, Fisher’s test for UMD and UMP, respectively). 

Enrichment analyses showed deregulated pathways in Cluster 4, including PPAR signaling, 

regulation of lipolysis in adipocytes, and estrogen pathways. These findings suggest the presence 

of a pre-tumorigenic environment within histologically normal mammary tissue, indicating 

potential prognostic value and implications for patient management and personalized care. 

5.4. Manuscript under review, unpublished findings 

5.4.1. Introduction 

Breast cancer represents 12.5% of global cancer diagnoses, with incidence rates rising by 0.5% 

annually [62,63]. Although awareness and early detection have led to a 42% reduction in mortality 

from 1989 to 2021, breast cancer remains a leading cause of death among women, with even low-

risk stage I cases exhibiting a 15-20% recurrence risk after two decades [93,94]. While 5-10% of 

cases are hereditary, most are sporadic [3–5]. Recent research has shifted focus to the normal 

mammary gland tissue for early molecular detection of tumors, revealing that even histologically 

normal tissue from breast cancer patients often contains significant genomic alterations, 

particularly in the PIK3CA and TP53 genes [40,45,46,50,54,60,92]. However, the clinical 

relevance of post-zygotic alterations in histologically normal mammary gland tissue of breast 

cancer patients remains unclear. This study screened UM and PT samples from sporadic breast 

cancer patients with poor outcomes and found that pathogenic post-zygotic variants in cancer-

associated genes are prevalent in normal mammary tissue. These variants correlate with patient 

survival, highlighting the importance of molecular screening for better clinical management. 

5.4.2. Results and Discussion 

The genetic profiles of 378 samples of PT, UM, and BL or SK tissue from reportedly sporadic 

breast cancer patients were analyzed. Patients were stratified into two cohorts: 77 patients with 

adverse outcomes (BCAP cohort) and 49 patients without specific prognosis-related criteria 

(BCUS cohort), all from the same ethnic population. The BCAP group had poor outcomes, with 

patients experiencing recurrence or metastasis (n=40), developing a second tumor (n=18), or both 

(n=8), and/or succumbing to the disease (n=45) within 10 years (Table 1). Additionally, UM and 

BL samples from 15 individuals undergoing mammoplasty for non-cancer-related reasons served 

as a control group. Two pathologists confirmed cancerous areas in PT samples and verified the 
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normal histology of UM and SK tissues. Post-zygotic variants were filtered based on their 

truncating nature (nonsense and frameshift), annotation in the ClinVar/InterVar databases 

(“pathogenic”, “likely pathogenic”, “uncertain significance”, or “conflicting interpretations of 

pathogenicity”), presence in the COSMIC database, and minor allele frequency (MAF); variants 

with MAF ≤ 0.001 across all gnomAD populations (“popmax”) or not noted in the database 

(gnomAD v2.1.1) were included. 

Table 1. Summarized clinicopathological features of breast cancer patients included in the Breast Cancer Adverse 

Prognoses (BCAP) and the Breast Cancer Un-Selected (BCUS) cohorts. 

 BCAP cohort BCUS cohort 

Number of individuals 77 49 

Age (median, range) 62, 23-85 65, 37-84 

  p value = 0.082 

Collected samples 238 147 

Primary Tumor, PT 77 49 

Uninvolved mammary gland, UM 77 49 

Distal fragment of uninvolved mammary gland, UMD 7 - 

Reference sample  

(whole peripheral blood, BL or skin, SK) 

77 49 

Histology 
  

Invasive ductal carcinoma, IDC 
59 40 

Invasive lobular carcinoma, ILC 
3 4 

IDC - ILC 
6 1 

other 
9 4 

Receptors 
  

Estrogen, ER (positive / negative / not available) 
57 / 20 43 / 5 / 1 

Progesterone, PR (positive / negative / not available) 
43 / 34 44 / 4 / 1 

HER2 (positive / negative / not available) 
16 / 56 / 5 5 / 43 / 1 

Subtype  
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Luminal A 
14 22 

Luminal B 
37 21 

HER-2 enriched 
9 2 

Triple-negative breast cancer, TNBC 
11 1 

Not available 
6 3 

Follow-up information  
  

Recurrence (yes / no) 
50 / 27 5 / 44 

Second cancer (yes / no) 
26 / 51 0 / 49 

Death* (yes / no) 
45 / 31 3 / 46 

Matched primary tumor (PT) and uninvolved mammary gland (UM, ≥1 cm ) samples were collected from two breast 

cancer cohorts, i.e. 77 individuals characterized with adverse outcomes (BCAP cohort) and 49 individuals recruited 

without any pre-selection criteria related to prognosis (BCUS cohort). Whole peripheral blood (BL) or skin (SK) 

samples (if BL was not available) were collected as reference samples to distinguish between post-zygotic and germline 

variants. Distal UM samples (UMD, 1.5-3 cm from PT, median 2.35 cm), available for 7 BCAP patients, were included. 

*Death status refers to patients who succumbed to the disease (patient with ID BCAP61 died from non-oncological 

reasons). 

A total of 167 variants were identified in UM samples from 41 BCAP patients, compared to 56 

variants in 24 BCUS patients and 10 variants in 7 RM individuals. Truncating nonsense and 

frameshift mutations (n=37) were exclusive to BCAP, many affecting tumor suppressor genes such 

as KMT2C [95], PTEN [96], TBX3 [97], and TP53 [7]. Missense variants were further evaluated 

using the REVEL score [98] (threshold 0.75) to predict pathogenicity. In the BCAP cohort, 29% 

(49/167) of variants were classified as pathogenic, including truncating (n=37) and missense 

variants (n=12) with in-silico evidence of pathogenicity (REVEL score  ≥ 0.75). Notably, 24% of 

pathogenic BCAP variants were detected only in UM samples, absent from corresponding tumors. 

The BCUS cohort exhibited only 7 pathogenic variants (13%), with 43% of them exclusive to UM 

samples, though significantly fewer than in BCAP (Hypergeometric test, p=0.0008578). 

Several of the identified pathogenic variants affected dosage-sensitive genes in BCAP, such as 

tumor suppressors (KMT2C [95], PTEN [96], TBX3 [97], and TP53 [7]) and oncogenes (PIK3CA 

[99], AKT1 [100]). PIK3CA variants were present in both BCAP and BCUS, while TP53 variants 
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(seven, including two recurrent variants) were exclusive to BCAP, suggesting a stronger role in 

breast cancer initiation. In contrast, BCUS samples contained pathogenic variants in genes like 

SF3B1 [101], HRAS [102], GNAS [103], and RUNX1 [104], with only the latter two being dosage-

sensitive.  

Duplex sequencing detected low-frequency (low as 1.34%) pathogenic PIK3CA and TP53 variants 

in the UM samples of poor-prognosis patients. These variants, linked to aggressive cancer 

progression, were often observed exclusively in UM samples rather than in the primary tumor, 

indicating potential early tumorigenic processes. Notably, some BCAP patients had multiple 

pathogenic variants across cancer-related genes[105], suggesting potential synergistic effects 

contributing to disease severity. Selected pathogenic or likely pathogenic variants in the BCAP 

cohort were further validated using Sanger sequencing or High-Resolution Melting. An overview 

of identified pathogenic, likely pathogenic variants or variants of uncertain significance or 

conflicting interpretations with in-silico evidence of pathogenicity (REVEL score ≥ 0.75), 

identified in BCAP and BCUS cohorts is provided in Table 2. 
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Table 2. Pathogenic, likely pathogenic variants, and variants of uncertain significance or conflicting interpretations of pathogenicity with evidence for pathogenicity 

according to REVEL score (≥0.75), identified via whole exome sequencing in breast cancer patients according to the study’s criteria. 

Gene Varianta ClinVarb 
(MAF) 

gnomADc 
REVEL scored COSMIC IDe AVSNP150f 

Individual ID and UM 

sample VAFg 
Cohort 

AKT1 c.49G>A (p.Glu17Lys) Pathogenic 0.00000887

2 

0.51 ID=COSV62571334 rs121434592 BCAP32 (0.6%), BCAP66* 

(0.7%) 

BCAP 

CNOT9 c.259T>C (p.Ser87Pro) Likely Pathogenic n.a. 0.737 ID=COSV55299564 rs1057519956 BCAP26 (0.4%) BCAP 

ERBB2 c.2264T>C (p.Leu755Ser) Likely Pathogenic n.a. 0.86 ID=COSV54062780 rs121913470 BCAP53 (0.7%) BCAP 

GATA4 c.1078G>A (p.Glu360Lys) Uncertain 

Significance 

0.0001 0.757 ID=COSV100632768 rs368489876 BCAP47 (19%) BCAP 

GNAS c.680A>G (p.Gln227Arg) Pathogenic n.a. 0.888 ID=COSV55671120 rs121913494 BCUS32 (0.3%) BCUS 

HRAS c.182A>T (p.Gln61Leu) Uncertain 

Significance 

n.a. 0.839 ID=COSV54236656 rs121913233 BCUS45 (0.9%) BCUS 

KMT2C c.10279C>T (p.Gln3427*) n.a. n.a. not applicable ID=COSV51484133 n.a. BCAP20 (0.9%) BCAP 

MKI67 c.4991_4992del 

(p.Thr1664Argfs*7) 

Pathogenic 0.0003 not applicable ID=COSV64072397 rs145960091 BCAP03 (0.3%) BCAP 

PIK3CA c.1258T>C (p.Cys420Arg) Pathogenic n.a. 0.788 ID=COSV55874020 rs121913272 BCUS45 (0.9%) BCUS 

PIK3CA c.1624G>A (p.Glu542Lys) Pathogenic n.a. 0.439 ID=COSV55873227 rs121913273 BCAP56 (0.7%), BCAP45 

(12%) 

BCAP 

PIK3CA c.3140A>G 

(p.His1047Arg) 

Pathogenic 0.00000891 0.455 ID=COSV55873195 rs121913279 BCAP15 (0.08%), 

BCAP31* (19%), BCAP36 

(0.3%), BCAP53* (0.7%), 

BCUS39 (28%) 

BCAP, BCUS 

PIK3CA c.3140A>T (p.His1047Leu) Pathogenic 0.00000891 0.359 ID=COSV55873401 rs121913279 BCAP54* (0.5%), BCUS49 

(0.6%) 

BCAP, BCUS 

POMGNT1 c.1814G>A (p.Arg605His) Pathogenic/Likely 

Pathogenic 

0.00001776 0.871 ID=COSV64340932 rs267606962 BCAP31 (10%) BCAP 

PTCH1 c.2714G>A (p.Arg905His) Conflicting 

interpretations 

0.00003266 0.881 ID=COSV59488865 rs764310195 BCAP20 (11%) BCAP 

PTEN c.388C>T (p.Arg130*) Pathogenic 0.00003266 not applicable ID=COSV64288463 rs121909224 BCAP15 (0.7%) BCAP 

RUNX1 c.497G>A (p.Arg166Gln) Pathogenic n.a. 0.962 ID=COSV55867644 rs1060499616 BCUS47 (0.5%) BCUS 

SF3B1 c.1996A>G (p.Lys666Glu) Likely Pathogenic n.a. 0.685 ID=COSV59206172 rs754688962 BCUS48 (18%) BCUS 

TBX3 c.371_372insTGGT  

(p.Ile125Profs*14) 

n.a. n.a. not applicable ID=COSV57471668 n.a. BCAP44 (12%) BCAP 

TP53 c.151G>T (p.Glu51*) Pathogenic n.a. not applicable ID=COSV52694020 n.a. BCAP58* (16%) BCAP 

TP53 c.227del 

(p.Ala76Aspfs*47) 

n.a. n.a. not applicable ID=COSV52728465 n.a. BCAP54 (0.5%) BCAP 

TP53 c.329G>C (p.Arg110His) Pathogenic n.a. 0.593 ID=COSV52668419 rs11540654 BCAP45 (0.8%) BCAP 
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TP53 c.637C>T (p.Arg213*) Pathogenic n.a. not applicable ID=COSV52665560 rs397516436 BCAP01* (0.8%), 

BCAP48* (0.6%) 

BCAP 

TP53 c.711G>A (p.Met237Ile) Pathogenic 0.00005437 0.923 ID=COSV52661887 rs587782664 BCAP15 (0.8%) BCAP 

TP53 c.1024C>T (p.Arg342*) Pathogenic n.a. not applicable ID=COSV52665487 rs730882029 BCAP38 (0.5%), BCAP47 

(0.7%) 

BCAP 

TP53 c.1025G>C (p.Arg342Pro) Pathogenic/Likely 

Pathogenic 

n.a. not applicable ID=COSV52690857 rs375338359 BCAP57 (0.6%) BCAP 

aVariant annotation provided for the basic isoform of the transcript. bPathogenicity classification according to the ClinVar database. cMinor allele frequency (MAF) 

across all gnomAD populations (gnomAD v2.1.1). dREVEL score. eID of the variant in the COSMIC (Cosmic_95 coding) database. frsIDs in dbSNP build 150. 

gIndividual ID and Variant Allele Frequency (VAF) for UM samples. BCAP – Breast Cancer Adverse Prognosis, BCUS – Breast Cancer Un-Selected, n.a.- not 

available. *variants were also detected in selected patients' distal uninvolved mammary gland sample (UMD).
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All breast cancer cases in this study were classified as sporadic based on family history, though 

genetic testing results were unavailable before recruitment. To assess germline pathogenic variants, 

BL or SK samples were analyzed across cohorts. In the BCAP cohort, 14 of 77 individuals (18%) 

carried pathogenic variants in known high or moderate penetrance breast cancer genes [106]. These 

included BRCA1 (c.4186C>T [p.Gln1396*], c.4689C>G [p.Tyr1563*], c.5179A>T [p.Lys1727*], 

c.5266dup [p.Gln1756Profs74]), BRCA2 (c.5645C>A [p.Ser1882], c.6591_6592del 

[p.Glu2198Asnfs4], c.9382C>T [p.Arg3128]), PALB2 (c.172_175del [p.Gln60Argfs7], 

c.1671_1674del [p.Ile558Lysfs2]), and RAD50 (c.3233_3236del [p.Lys1079Valfs28]). BRCA1 

c.5266dup (p.Gln1756Profs74) and PALB2 c.172_175del (p.Gln60Argfs*7) were recurrent, 

observed in four and two unrelated individuals, respectively. The 18% mutation frequency in 

BCAP surpasses previous reports (~10%) and may reflect the aggressive nature of these cases 

[7,55,92]. 

Four BCAP individuals (29%) with germline pathogenic variants also harbored post-zygotic 

pathogenic variants in known cancer-related genes in their UM samples. The germline variants in 

these cases were found in BRCA1 (four cases) and RAD50 (one case), while the corresponding 

post-zygotic variants were identified in PIK3CA or TP53. In the BCUS cohort, only a single patient 

carried a pathogenic BRCA1 variant (c.5266dup [p.Gln1756Profs*74]). No germline pathogenic or 

likely pathogenic variants in breast cancer-associated genes were detected in the control group.  

Kaplan-Meier survival analysis revealed that patients with recurrence (n=53) had significantly 

lower survival probabilities compared to those without recurrence (n=72) across the BCAP and 

BCUS cohorts (log-rank test, p=0.00017), with a hazard ratio of 2.44 (95% CI: 1.07-5.54, 

p=0.0337), indicating more than twice the risk of death. Given the shorter follow-up period for 

BCUS (2 years) versus BCAP (10 years), early outcomes were assessed within the first 24 months 

post-diagnosis. During this period, recurrence patients (n=53) had significantly lower survival 

probabilities than non-recurrence patients (n=71) (log-rank test, p<0.0001), with a hazard ratio of 

4.85 (95% CI: 1.4-16.25, p=0.0105), suggesting over four times the risk of death. BCAP patients 

had significantly more recurrence events than BCUS patients within this timeframe (Fisher’s exact 

test, p=0.005488). Within the BCAP cohort, recurrence patients (n=48) had lower survival 

probabilities throughout the follow-up period compared to non-recurrence patients (n=28) (log-

rank test, p=0.015), with a similar trend observed in the first 24 months (log-rank test, p=0.0088). 
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Survival probabilities differed significantly across groups (log-rank test, p=0.024), indicating that 

the presence and type of pathogenic variants (germline or post-zygotic), along with recurrence 

status, strongly influence patient outcomes (Figure 4). Patients with pathogenic germline variants 

(green) had the shortest recurrence-free survival, with most recurrences occurring within the first 

60 months. In contrast, patients with pathogenic post-zygotic variants in breast cancer-specific 

genes (blue) experienced recurrences less frequently and over a longer follow-up period, 

suggesting a moderate but significant effect on recurrence risk. Patients without pathogenic 

germline or post-zygotic variants (yellow) showed intermediate survival outcomes.  

 

 

Figure 4. Kaplan-Meier survival curves of breast cancer patients with pathogenic variants and recurrent disease. The 

curves represent survival probabilities for different groups of patients from the BCAP cohort (breast cancer patients 

with adverse prognoses) and the BCUS cohort (breast cancer patients without specific prognosis criteria), stratified 

by the presence of recurrent disease and/or pathogenic germline or post-zygotic variants in breast cancer-specific 
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genes. Survival time was measured from the date of diagnosis to death or the end of the follow-up period (10 years for 

BCAP and 2 years for BCUS). The x-axis represents time in months, and the y-axis represents the probability of 

survival. Vertical ticks on the curves indicate censored death events. 

PIK3CA and TP53 variants co-occurred in three BCAP patients, suggesting a synergistic role in 

cancer progression. Notably, a single BCAP patient had concurrent pathogenic variants in PIK3CA, 

TP53, and PTEN, highlighting the complex interplay of oncogenic and tumor-suppressive 

pathways. These combined variants likely contribute to a more aggressive disease course, 

underscoring the need for comprehensive genetic profiling. Post-zygotic variants in TP53 and 

PIK3CA have been observed in breast tumors, but their effects on normal mammary tissue are less 

clear [107,108]. These alterations, which accumulate with age and hormonal changes [11,109], 

may represent early pre-cancerous changes that could lead to cancer if activated by factors like 

aging or injury. All BCAP patients experienced adverse outcomes within 10 years, indicating the 

significant impact of these genetic variations on prognosis.  

While current diagnostics focus on germline variants [106], our study shows that post-zygotic 

variants, like those in PIK3CA and TP53, are often found in normal tissue after breast-conserving 

surgery, with allele frequencies ranging from 0.03 to 0.28, suggesting they may contribute to 

recurrence or metastasis. Our findings show that pathogenic post-zygotic variants in breast cancer-

associated genes are more prevalent in normal mammary tissues of patients with adverse outcomes, 

such as recurrence or metastasis, compared to those without specific prognosis criteria or control 

individuals. Monitoring these patients for nearly a decade allowed us to directly link these variants 

to clinical outcomes. These alterations were strongly associated with disease progression, 

particularly recurrence, indicating an increased risk of aggressive cancer before clinical symptoms 

appear. This underscores the need for expanded genetic screening and enhanced surveillance to 

improve personalized management, especially for patients with poor prognoses 
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VI. CONCLUSIONS 

Based on the findings from the four studies encompassed in this doctoral work, the following 

conclusions can be drawn: 

6.1. Paper I – Filipowicz N. et al. 

• The establishment of a comprehensive biobank of histologically controlled, non-tumorous 

mammary gland samples, alongside tumor, blood, and skin samples, was successfully 

achieved. 

• This resource addressed significant challenges such as patient heterogeneity and small 

cohort sizes, creating a foundation for high-quality "omics" studies. 

• By defining stringent sampling protocols, the study ensured reliable differentiation between 

normal and pathological tissue, improving the reproducibility of cancer research. 

6.2. Paper II – Kostecka A. et al. 

• Ultra-high sensitivity methods successfully identified structural rearrangements and 

somatic pathogenic variants in breast cancer-related genes within histologically normal 

mammary tissue. 

• Subtle molecular alterations, including low-frequency pathogenic variants in genes such as 

PIK3CA and TP53, were detected, highlighting the potential role of normal tissue in cancer 

progression. 

• These findings underscore the importance of genetic profiling in apparently normal tissues 

for improved understanding of early oncogenic changes. 

6.3. Paper III – Andreou M. &  Jąkalski M. et al. 
• Transcriptomic profiling of histologically normal mammary tissues revealed distinct 

expression patterns associated with poor clinical outcomes, such as smaller tumors and 

HER2-positive status. 

• The study identified a potential pre-tumorigenic environment in non-tumorous tissues, 

emphasizing its clinical relevance for prognostication. 

• The KAOS gene signature was defined, offering potential biomarkers for identifying early-

stage cancer risks and refining patient management strategies. 
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6.4. Unpublished findings, manuscript under review (preprint). 

• Pathogenic post-zygotic variants were detected in non-tumorous tissues, correlating 

strongly with adverse clinical outcomes, including recurrence, metastasis, and mortality.  

• Key genes such as PIK3CA, TP53, and AKT1 emerged as central to early tumorigenic 

processes, with their variants linked to aggressive disease progression and poorer survival 

outcomes in patients with poor prognoses.  

• This study demonstrated that such pathogenic variants are more frequently observed in 

patients with adverse outcomes than those without specific prognosis-related criteria, 

underscoring their value as potential prognostic biomarkers. 

• The findings support the use of molecular screening of normal mammary tissues to identify 

high-risk patients, enabling targeted interventions and improving clinical management for 

those at greatest risk of recurrence or mortality. 

6.5. General Conclusions 

• This work advances the understanding of somatic mosaicism in sporadic breast cancer, 

demonstrating that histologically normal mammary gland tissue harbors molecular changes 

that are clinically relevant, associating a gene expression signature and deleterious post-

zygotic variants with tumor size, increased mortality and survival. 

• The findings emphasize the need for high-sensitivity detection methods, comprehensive 

sampling protocols, and the integration of normal tissue analysis into routine cancer 

diagnostics and research, potentially through the use of advanced molecular technologies 

and systematic tissue sampling approaches. 

• These studies provide a robust foundation for future efforts to refine patient stratification, 

prognosis, and personalized treatment strategies by leveraging early molecular alterations 

in normal tissues, supported by advanced data analysis techniques and the identification of 

potential diagnostic markers. 

These conclusions collectively illustrate the successful fulfillment of the research aims and the 

significant contributions of this work to breast cancer research. 

6.6. Future Perspectives 

Advancing high-sensitivity detection methods is crucial to identifying subtle cellular changes that 

might exist well before tumor detection by conventional techniques. State-of-the-art sequencing, 
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single-cell analysis, and duplex sequencing technologies provide the precision needed to detect 

early molecular changes with higher accuracy at lower thresholds. These technologies offer a 

deeper understanding of tumorigenesis and reveal a more nuanced view of the genomic landscape 

within normal mammary tissues adjacent to tumors. 

Studying these alterations across patients with varied clinical outcomes is essential to linking 

changes in normal tissue with patient prognosis. Stratifying patients by the presence or absence of 

molecular alterations could reveal correlations with disease progression, treatment efficacy, and 

survival, enabling tailored treatment strategies that consider the molecular profile of normal tissue 

rather than focusing solely on the tumor. 

Longitudinal studies that track these molecular changes over time in patients with differing 

outcomes are also invaluable. Such studies could identify early biomarkers for relapse or resistance, 

providing clinicians with actionable insights for timely intervention. This proactive approach could 

improve relapse prediction and inform adjuvant therapy decisions, potentially enhancing long-term 

outcomes for breast cancer patients. 

In conclusion, advancing sensitive detection methods and rigorously investigating molecular 

alterations in diverse patient groups are essential for translating these findings into clinical practice. 

These efforts hold promise for refining cancer diagnostics, enhancing treatment precision, and 

ultimately improving patient care through more targeted, effective therapeutic options. 
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VIII. LIST OF FIGURES WITH FIGURE LEGENDS 

Figure 1. Pie charts present the distribution of cases and deaths for the top five cancers 

in 2022 for A: both sexes and B: females. For each sex, the area of the pie chart reflects the 

proportion of the total number of cases or deaths; nonmelanoma skin cancers (excluding basal cell 

carcinoma) are included in the other category. Figure adapted from Bray et al. (2024), CA Cancer 

J Clin. [1]…………………………………………………………………………………..page  14 

Figure 2. Diagram of postnatal mammary gland development. A: in the postnatal 

animal, the early mammary gland grows in an allometric fashion and remains relatively 

dormant until the onset of puberty. At this stage, dramatic morphogenesis occurs, largely under 

the control of estrogen (E). In the young adult, progesterone (Pg) regulates side-branching, while 

in pregnancy, the steroid hormones E, Pg, and prolactin (Prl) exert roles in the expansion of the 

alveolar units. In the late stages of pregnancy and during lactation, the peptide hormone Prl plays 

a key role in establishing the secretory state. After lactation, the gland involutes and returns to a 

resting state. B: representation of a terminal end bud in a pubertal mouse mammary gland. 

Figure reproduced from Fu et al. (2020), Physiol Rev. [10]………………………………...page 17 

Figure 3. Mutation accumulation and clonal expansion in normal tissues. The 

patchwork plot shows the spread of clones harboring driver mutations in normal tissues. With 

aging, somatic mutations accumulate in cells, clones with driver mutations expand, and tissues 

undergo remodeling. Exposure to environmental factors, such as UV rays (skin), alcohol 

consumption, and smoking (esophagus), increases the mutation accumulation rate and promotes 

the expansion of mutant clones. Figure reproduced from Maeda and Kakiuchi (2024), Cancer Sci. 

[51]……………………………………………………………………………………….....page 26 

Figure 4. Kaplan-Meier survival curves of breast cancer patients with pathogenic 

variants and recurrent disease. The curves represent survival probabilities for different groups 

of patients from the BCAP cohort (breast cancer patients with adverse prognoses) and the BCUS 

cohort (breast cancer patients without specific prognosis criteria), stratified by the presence of 

recurrent disease and/or pathogenic germline or post-zygotic variants in breast cancer-specific 

genes. Survival time was measured from the date of diagnosis to death or the end of the follow-up 

period (10 years for BCAP and 2 years for BCUS). The x-axis represents time in months, and the 
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y-axis represents the probability of survival. Vertical ticks on the curves indicate censored death 

events……………………………………………………………………………………..…page 51 
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IX. LIST OF TABLES WITH TABLE LEGENDS 
Table 1. Matched and primary tumor (PT) and uninvolved mammary gland (UM, ≥1 

cm ) samples were collected from two breast cancer cohorts, i.e. 77 individuals characterized 

with adverse outcomes (BCAP cohort) and 49 individuals recruited without any pre-selection 

criteria related to prognosis (BCUS cohort). Whole peripheral blood (BL) or skin (SK) samples 

(if BL was not available) were collected as reference samples to distinguish between post-zygotic 

and germline variants. Distal UM samples (UMD, 1.5-3 cm from PT, median 2.35 cm), available 

for 7 BCAP patients, were included. The detailed sampling design is described in Materials and 

Methods. An overview is also available in Figure 1. *Death status refers to patients who succumbed 

to the disease (patient with ID BCAP61 died from non-oncological reasons)………………page 45 

Table 2. Pathogenic, likely pathogenic variants, and variants of uncertain significance 

or conflicting interpretations of pathogenicity with evidence for pathogenicity according to 

REVEL score (≥0.75), identified via whole exome sequencing in breast cancer patients. 

aVariant annotation provided for the basic isoform of the transcript. bPathogenicity classification 

according to the ClinVar database. cMinor allele frequency (MAF) across all gnomAD populations 

(gnomAD v2.1.1). dREVEL score. eID of the variant in the COSMIC (Cosmic_95 coding) database. 

frsIDs in dbSNP build 150. gIndividual ID and Variant Allele Frequency (VAF) for UM samples. 

BCAP – Breast Cancer Adverse Prognosis, BCUS – Breast Cancer Un-Selected, n.a.- not available. 

*variants were also detected in the distal uninvolved mammary gland sample (UMD) of selected 

patients……………………………………………………………………………………...page 48 
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X. LIST OF ABBREVIATIONS 

AJCC: American Joint Committee On Cancer  

BCAP: Breast Cancer Adverse Prognoses  

BCS: Breast-Conserving Surgery  

BCUS: Breast Cancer Un-Selected 

BE: Branched Evolution 

BL:  Peripheral Blood 

BP: Plasma  

cDNA: Complementary DNA 

CNAs: Copy Number Alterations 

CNVs: Copy Number Variations  

CPM: Contralateral Prophylactic Mastectomy 

CSC: Cancer Stem Cell  

CTRL: Control 

DCIS: Ductal Carcinoma In Situ  

DEGs: Differentially Expressed Genes 

E: Estrogen 

H&E: Hematoxylin and Eosin  

HLA: Human Leukocyte Antigens 

HRM: High-Resolution Melting 

IDC: Invasive Ductal Carcinoma  

ILC: Invasive Lobular Carcinoma  

LE: Linear Evolution 

LOH: Loss Of Heterozygosity 

LOY: Loss of the Y chromosome  

MRI: Magnetic Resonance Imaging  

mRNA: Messenger RNA  

MUG: Medical University of Gdańsk  

NGS: Next-Generation Sequencing  



74 

 

PCA: Principal Component Analysis  

PE: Punctuated Evolution 

PET: Positron Emission Tomography  

Pg: Progesterone 

Prl: Prolactin 

PT: Primary Tumor 

RM: Reduction Mammoplasty  

RNA-seq: RNA sequencing 

SK: Skin 

SNP: Single Nucleotide Polymorphism  

TEBs: Terminal End Buds  

TNBC: Triple-Negative Breast Cancer  

UM: Uninvolved Margin / Uninvolved Mammary gland 

UMD: UM Distal from PT 

UMIs: Unique Molecular Identifiers 

UMP: UM Proximal from PT 

VAF: Variant Allele Frequency 

WB: Whole Blood  

WES: Whole Exome Sequencing 
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